【題目】用數(shù)學(xué)歸納法證明“當(dāng)n為正奇數(shù)時(shí),xn+yn能被x+y整除”,第二步歸納假設(shè)應(yīng)寫成( )

A.假設(shè)n=2k+1(kN*)正確,再推n=2k+3正確

B.假設(shè)n=2k﹣1(kN*)正確,再推n=2k+1正確

C.假設(shè)n=k(kN*)正確,再推n=k+1正確

D.假設(shè)n=k(k≥1)正確,再推n=k+2正確

【答案】B

【解析】

試題分析:注意n為正奇數(shù),觀察第一步取到1,即可推出第二步的假設(shè).

解:根據(jù)數(shù)學(xué)歸納法的證明步驟,注意n為奇數(shù),所以第二步歸納假設(shè)應(yīng)寫成:假設(shè)n=2k﹣1(kN*)正確,再推n=2k+1正確;故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一年級學(xué)生身體素質(zhì)體能測試的成績(百分制)分布在內(nèi),同時(shí)為了了解學(xué)生愛好數(shù)學(xué)的情況,從中隨機(jī)抽取了名學(xué)生,這名學(xué)生體能測試成績的頻率分布直方圖如圖所示,各分?jǐn)?shù)段的愛好數(shù)學(xué)的人數(shù)情況如表所示.

(1)求的值;

(2)用分層抽樣的方法,從體能成績在愛好數(shù)學(xué)學(xué)生中隨機(jī)抽取6人參加某項(xiàng)活動(dòng),現(xiàn)從6人中隨機(jī)選取2人擔(dān)任領(lǐng)隊(duì),記體能成績在內(nèi)領(lǐng)隊(duì)人數(shù)為人,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線lxy+1=0關(guān)于y輛對稱的直線方程為 (   )

A. xy-1=0 B. xy+1=0

C. xy+1=0 D. xy-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某上市股票在30天內(nèi)每股的交易價(jià)格P與時(shí)間t組成有序數(shù)對t,P,點(diǎn)t,P落在如下圖象中的兩條線段上.該股票在30天內(nèi)包括30天的日交易量Q萬股與時(shí)間t的部分?jǐn)?shù)據(jù)如下表所示:

1根據(jù)提供的圖象,寫出該種股票每股的交易價(jià)格P與時(shí)間t所滿足的函數(shù)關(guān)系式;

2根據(jù)表中數(shù)據(jù)確定日交易量Q萬股與時(shí)間t的一次函數(shù)關(guān)系式;

3用y萬元表示該股票日交易額,寫出y關(guān)于t的函數(shù)關(guān)系式,并求出這30天中第幾天日交易額最大,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)球的體積之比為8:27,那么這兩個(gè)球的表面積之比為( )

A. 2:3 B. 4:9 C. 8:27 D. 16:81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—1:幾何證明選講

如圖,圓周角BAC的平分線與圓交于點(diǎn)D,過點(diǎn)D的切線與弦AC的延長線交于點(diǎn) E,ADBC于點(diǎn)F

)求證:BCDE;

)若DE、CF四點(diǎn)共圓,且,求BAC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),討論函數(shù)圖象的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推出正四面體的下列性質(zhì),你認(rèn)為比較恰當(dāng)?shù)氖?( )

①各棱長相等,同一頂點(diǎn)上的任意兩條棱的夾角都相等;

②各個(gè)面都是全等的正三角形,相鄰兩個(gè)面所成的二面角都相等;

③各個(gè)面都是全等的正三角形,同一頂點(diǎn)上的任意兩條棱的夾角都相等.

A. B. C. ①② D. .①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)定義在區(qū)間內(nèi),對于任意的,有,且當(dāng)時(shí),

(1)驗(yàn)證函數(shù)是否滿足這些條件;

(2)判斷這樣的函數(shù)是否具有奇偶性和單調(diào)性,并加以證明;

(3)若,求方程的解.

查看答案和解析>>

同步練習(xí)冊答案