定義在R上的函數(shù)
滿足
,當(dāng)
時(shí),
單調(diào)遞增,如果
,且
,則
的值為( )
A.恒小于 | B.恒大于 | C.可能為 | D.可正可負(fù) |
滿足
所以
關(guān)于(2,0)對稱,由于當(dāng)
時(shí),
單調(diào)遞增,
可知
在
時(shí)也是增函數(shù)。
由
知
,
且
,
,
一正一負(fù),
所以不妨假設(shè)
,
,且
,
所以通過圖像可知
>0
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)f(x)=
( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(滿分12分)已知函數(shù)
(x∈R).
(1)若
有最大值2,求實(shí)數(shù)a的值;
(2)求函數(shù)
的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題12分)已知集合
是同時(shí)滿足下列兩個(gè)性質(zhì)的函數(shù)
組成的集合:
①
在其定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
②在
的定義域內(nèi)存在區(qū)間
,使得
在
上的值域是
.
(1)判斷函數(shù)
是否屬于集合
?并說明理由.若是,則請求出區(qū)間
;
(2)若函數(shù)
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
.已知凸函數(shù)的性質(zhì)定理:如果函數(shù)f(x)在區(qū)間D上是凸函數(shù),則對于區(qū)間內(nèi)的任意x
1,x
2,…,x
n,有
[f(x
1)+f(x
2)+…+f(x
n)]≤
.已知y=sinx在區(qū)間(0,π)上是凸函數(shù),那么在△ABC中,sinA+sinB+sinC的最大值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在區(qū)間
上為增函數(shù)的是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若定義在R上的二次函數(shù)f(x)=ax2—2ax+b在區(qū)間[0,1]上是增函數(shù),且
,則實(shí)數(shù)m的取值范圍是 ★
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
函數(shù)
在區(qū)間[0,1]上的最大值和最小值之和為
______
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)
在區(qū)間
上單調(diào)遞增,那么實(shí)數(shù)
a的取值范圍是( )
查看答案和解析>>