若△ABC中,三個內(nèi)角A、B、C成等差數(shù)列,且a+c=1,則邊b的取值范圍是
[
1
2
,1)
[
1
2
,1)
分析:由題意可得B=
π
3
,A+C=
3
,由余弦定理可得 b2=1-3ac,利用基本不等式求出b≥
1
2
,再由b<a+c=1,求出邊b的取值范圍.
解答:解:若△ABC中,三個內(nèi)角A、B、C成等差數(shù)列,則有B=
π
3
,A+C=
3

由余弦定理可得 b2=a2+c2-2ac•cosB=a2+c2-ac=(a+c)2-3ac=1-3ac.
∵a+c=1≥2
ac
,∴ac≤
1
4

∴b2=1-3ac≥
1
4
,即b≥
1
2

再由b<a+c=1,可得 
1
2
≤b<1,故邊b的取值范圍是 [
1
2
,1)

故答案為 [
1
2
,1)
點評:本題主要考查等差數(shù)列的定義和性質(zhì),余弦定理、基本不等式的應(yīng)用,解三角形,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在棱錐P-ABC中,側(cè)棱PA、PB、PC兩兩垂直,Q為底面△ABC內(nèi)一點,若點Q到三個側(cè)面的距離分別為3、4、5,則以線段PQ為直徑的球的表面積為( 。
A、100π
B、50π
C、25π
D、5
2
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,三個內(nèi)角A、B、C所對的邊分別為a、b、c,設(shè)復(fù)數(shù)z=sinA(sinA-sinC)+(sin2B-sin2C)i,且z在復(fù)平面內(nèi)所對應(yīng)的點在直線y=x上.
(1)求角B的大;
(2)若sinB=cosAsinC,△ABC的外接圓的面積為4π,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱錐P-ABC中,側(cè)棱PA,PB,PC兩兩垂直,Q為底面ABC內(nèi)一點,若點Q到三個側(cè)面的距離分別為2,2,
2
,則以線段PQ為直徑的球的表面積是
10π
10π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱錐P-ABC中,側(cè)棱PA、PB、PC兩兩垂直,Q為底面△ABC內(nèi)一點,若點Q到三個側(cè)面的距離分別為1、2、3,則以線段PQ為直徑的球的表面積為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

△ABC中,三個內(nèi)角A、B、C所對的邊分別為a、b、c,設(shè)復(fù)數(shù)z=sinA(sinA-sinC)+(sin2B-sin2C)i,且z在復(fù)平面內(nèi)所對應(yīng)的點在直線y=x上.
(1)求角B的大;
(2)若sinB=cosAsinC,△ABC的外接圓的面積為4π,求△ABC的面積.

查看答案和解析>>

同步練習冊答案