精英家教網 > 高中數學 > 題目詳情

已知曲線 y = x3 + x-2 在點 P0 處的切線  平行直線
4x-y-1=0,且點 P0 在第三象限,
求P0的坐標; ⑵若直線  , 且 l 也過切點P0 ,求直線l的方程.

(1)的坐標為 ⑵

解析試題分析:(1)根據曲線方程求出導函數,因為已知直線的斜率為4,根據切線與已知直線平行得到斜率相等都為4,所以令導函數等于4得到關于x的方程,求出方程的解,即為切點的橫坐標,代入曲線方程即可求出切點的縱坐標,又因為切點在第3象限,進而寫出滿足題意的切點的坐標;
(2)由直線l1的斜率為4,根據兩直線垂直時斜率的乘積為-1,得到直線l的斜率為-,又根據(1)中求得的切點坐標,寫出直線l的方程即可.
⑴由,得
由已知得,解之得.當時,;當時,
又∵點在第三象限,
∴切點的坐標為
⑵∵直線,的斜率為4,∴直線l的斜率為,
∵l過切點,的坐標為)
∴直線l的方程為
考點:利用導數研究曲線上某點切線方程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,曲線在點處的切線與軸交點的橫坐標為
(1)求;
(2)證明:當時,曲線與直線只有一個交點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設f(x)是定義在區(qū)間(1,+∞)上的函數,其導函數為f′(x).如果存在實數a和函數h(x),其中h(x)對任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),則稱函數f(x)具有性質P(a).
(1)設函數f(x)=ln x+ (x>1),其中b為實數.
①求證:函數f(x)具有性質P(b);
②求函數f(x)的單調區(qū)間;
(2)已知函數g(x)具有性質P(2).給定x1,x2∈(1,+∞),x1<x2,設m為實數,α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ax2-(a+2)x+lnx.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當a>0時,若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數R),為其導函數,且有極小值
(1)求的單調遞減區(qū)間;
(2)若,,當時,對于任意x,的值至少有一個是正數,求實數m的取值范圍;
(3)若不等式為正整數)對任意正實數恒成立,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)求函數的單調區(qū)間;
(2)求函數 上的最小值;
(3)對一切的,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求的極值;
(2)若恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 
(1)求在點處的切線方程;
(2)證明:曲線與曲線有唯一公共點;
(3)設,比較的大小, 并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數上的最大值為).
(1)求數列的通項公式;
(2)求證:對任何正整數n (n≥2),都有成立;
(3)設數列的前n項和為Sn,求證:對任意正整數n,都有成立.

查看答案和解析>>

同步練習冊答案