在△ABC中,若sin2A-sin2B>sin2C,則△ABC的形狀是( 。
A、銳角三角形
B、直角三角形
C、鈍角三角形
D、等腰直角三角形
考點(diǎn):余弦定理,正弦定理
專題:計(jì)算題,解三角形
分析:運(yùn)用正弦定理可得b2+c2<a2,再由余弦定理,可得cosA<0,即可判斷三角形的形狀.
解答: 解:在△ABC中,若sin2A-sin2B>sin2C,
則由正弦定理可得a2-b2>c2,即b2+c2<a2,
再由余弦定理可得,cosA=
b2+c2-a2
2bc
<0,
即有A為鈍角,
則三角形ABC為鈍角三角形.
故選C.
點(diǎn)評(píng):本題考查正弦定理、余弦定理的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

《中國好聲音》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強(qiáng)力打造的大型勵(lì)志專業(yè)音樂評(píng)論節(jié)目,于2012年7月13日正式在浙江衛(wèi)視播出,每期節(jié)目均由四位導(dǎo)師組成,導(dǎo)師背對(duì)歌手,當(dāng)每位參賽選手喝完之前有導(dǎo)師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的老師的團(tuán)隊(duì)中接受指導(dǎo)訓(xùn)練,已知某期《中國好聲音》中,6位選手演唱完后,四位導(dǎo)師為其轉(zhuǎn)身情況如下表所示:
導(dǎo)師轉(zhuǎn)身人數(shù)(人)4321
獲得相應(yīng)導(dǎo)師轉(zhuǎn)身的選手人數(shù)(人)1221
現(xiàn)從6位選手中隨機(jī)抽取兩人考察他們演唱完后導(dǎo)師轉(zhuǎn)身情況.
(1)求選出的2人導(dǎo)師為其轉(zhuǎn)身的人數(shù)和為4的概率.
(2)記選出的2人導(dǎo)師為其轉(zhuǎn)身的人數(shù)之和為x,求x的分布列及數(shù)學(xué)期望E(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)T=|2x-1|,若不等式T(x)≥(1+
1
a
)-|2-
1
a
|對(duì)任意實(shí)數(shù)a≠0恒成立,則x的取值范圍是( 。
A、(-∞,0]∪[1,+∞)
B、(0,1]
C、(-∞,-1]∪[2,+∞)
D、[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一小型轎車銷售店有奇瑞E5、比亞迪F3、江淮同悅?cè)N不同型號(hào)的小轎車,有甲、乙、丙、丁四位顧客準(zhǔn)備到此店各自購買一輛小轎車,假設(shè)此四位顧客買每一種型號(hào)的小轎車的概率均為
1
3

(Ⅰ)求其中甲、乙兩位顧客購買同一種型號(hào)小轎車的概率;
(Ⅱ)設(shè)這4名顧客購買比亞迪F3的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax-3+3(a>0,且a≠1)的圖象恒過定點(diǎn),則定點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)設(shè)隨機(jī)變量X~N(1,52),且P(X≤0)=P(X>a-2),則實(shí)數(shù)a的值為4.
(2)已知事件A、B是相互獨(dú)立事件,若P(A)=0.15,P(B)=0.60,則P(
.
A
B)=0.51(
.
A
表示事件A的對(duì)立事件).
(3)(
3x
+
1
x
18的二項(xiàng)展開式中,共有4個(gè)有理項(xiàng).
(4)由曲線y=3-x2和直線y=2x所圍成的面積為
32
3

則其中真命題的序號(hào)是( 。
A、(1)、(2)
B、(1)、(3)
C、(2)、(3)
D、(1)、(2)、(3)、(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知a=3,A=60°,b=
6
,則B=(  )
A、45°B、30°
C、60°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,3cos(B-C)-1=6cosBcosC
(1)求cosA
(2)若a=3,S△ABC=2
2
,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在y軸上,經(jīng)過點(diǎn)(
3
,0),且離心率為
1
2
,則橢圓方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案