精英家教網 > 高中數學 > 題目詳情
過原點O作兩條相互垂直的直線分別與橢圓P:交于A、C與B、D, 則四邊形ABCD面積最小值為______________________.

試題分析:由題意可得四邊形ABCD面積等于•AC•BD,當AC和BD中,有一條直線的斜率不存在時,求得四邊形ABCD面積等于2.當AC和BD的斜率都存在時,設AC的方程為y=kx,BD方程為y=-x.y=kx代入橢圓的方程化簡,利用根與系數的關系及弦長公式求得AC的值,同理求得BD的值,化簡 
•AC•BD 為,再利用基本不等式求得它的最小值,綜合可得結論.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓)的右焦點,右頂點,且

(1)求橢圓的標準方程;
(2)若動直線與橢圓有且只有一個交點,且與直線交于點,問:是否存在一個定點,使得.若存在,求出點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,橢圓C:的左頂點為A,M是橢圓C上異于點A的任意一點,點P與點A關于點M對稱.

(1)若點P的坐標,求m的值;
(2)若橢圓C上存在點M,使得,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

知橢圓的兩焦點、,離心率為,直線與橢圓交于兩點,點軸上的射影為點

(1)求橢圓的標準方程;
(2)求直線的方程,使的面積最大,并求出這個最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設橢圓的左、右焦點分別、,點是橢圓短軸的一個端點,且焦距為6,的周長為16.
(I)求橢圓的方程;
(2)求過點且斜率為的直線被橢圓所截的線段的中點坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓經過點,一個焦點為
(1)求橢圓的方程;
(2)若直線軸交于點,與橢圓交于兩點,線段的垂直平分線與軸交于點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓的右焦點為F(3,0),過點F的直線交橢圓于A、B兩點.若AB的中點坐標為(1,-1),則E的方程為(    )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C的方程為=1(a>b>0),雙曲線=1的兩條漸近線為l1、l2,過橢圓C的右焦點F作直線l,使l⊥l1.又l與l2交于P點,設l與橢圓C的兩個交點由上至下依次為A、B(如圖).

(1)當l1與l2夾角為60°,雙曲線的焦距為4時,求橢圓C的方程;
(2)當=λ,求λ的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)經過點M(-2,-1),離心率為.過點M作傾斜角互補的兩條直線分別與橢圓C交于異于M的另外兩點P、Q.
(1)求橢圓C的方程;
(2)試判斷直線PQ的斜率是否為定值,證明你的結論.

查看答案和解析>>

同步練習冊答案