分析:(Ⅰ)利用導(dǎo)數(shù)的幾何意義求得切線斜率,點(diǎn)斜式寫(xiě)出切線方程,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;
(Ⅱ)方程φ′(x)=φ(x)(
-
+
)等價(jià)于
x•
=x
(
-
+
),即
x2-ax+lnx=0,設(shè)g(x)=
x2-ax+lnx (x>0),根據(jù)方程的根與函數(shù)零點(diǎn)的關(guān)系,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,進(jìn)而得出方程解的情況.
解答:
解:(Ⅰ)φ(x)=x
=
elnx,∴φ′(x)=
x•
,
φ′(1)=1,φ(1)=1,∴φ(x)=x
(x>0)在x=1處的切線方程為y=x.
令φ′(x)=0得x=e,當(dāng)x∈(0,e)時(shí),φ′(x)>0,φ(x)單調(diào)遞增,
當(dāng)x∈(e,+∞)時(shí),φ′(x)<0,φ(x)單調(diào)遞減,
∴φ(x)在(0,e)時(shí),單調(diào)遞增,在(e,+∞)時(shí),單調(diào)遞減.
(Ⅱ)方程φ′(x)=φ(x)(
-
+
)等價(jià)于
x•
=x
(
-
+
),
即
x2-ax+lnx=0,設(shè)g(x)=
x2-ax+lnx (x>0),
∴g′(x)=(a-1)x-a+
=
,
①當(dāng)a=1時(shí),g′(x)=
,x∈(0,1)時(shí),g′(x)>0,g(x)遞增,x∈(1,+∞)時(shí),g′(x)<0,g(x)遞減,
[g(x)]
max=g(1)=-1<0,此時(shí)方程無(wú)實(shí)數(shù)根;
②當(dāng)a>1時(shí),g′(x)=(a-1)x-a+
=
=
,
(i)當(dāng)
=1,a=2時(shí),g′(x)=
≥0,g(x)在(0,+∞)遞增,
且當(dāng)x→0時(shí),g(x)→-∞,x→+∞時(shí),g(x)→+∞,
故此時(shí)方程有唯一解;
(ii)當(dāng)
>1,a∈(1,2)時(shí),g(x)在(0,1)及(
,+∞)遞增,在(1,
)遞減,
[g(x)]
max=g(1)=-
<0,且當(dāng)x→+∞時(shí),g(x)→+∞,
故此時(shí)方程有唯一解;
(iii)當(dāng)
<1,a∈(2,+∞)時(shí),g(x)在(0,
)及(1,+∞)遞增,在(
,1)遞減,
[g(x)]
max=g(
)=
+ln
<0,且當(dāng)x→+∞時(shí),g(x)→+∞,
故此時(shí)方程有唯一解;
③當(dāng)-1<a<1時(shí)
<0<1,g(x)在(0,1)遞增,在(1,+∞)遞減,
[g(x)]
max=g(1)=-
<0,方程無(wú)實(shí)數(shù)解.
綜上所述,當(dāng)a∈(-1,1)時(shí),方程無(wú)實(shí)數(shù)解;當(dāng)a∈(1,+∞)時(shí)方程有唯一解.