設(shè)p=(log2x)2+(t-2)log2x-t+1,若t在區(qū)間[-2,2]上變動時,p恒為正值,試求x的取值范圍.
【答案】分析:根據(jù)題意,對p化簡可得p=(log2x-1)t+(log2x)2-2log2x+1,因?yàn)閠∈[-2,2]時p恒為正值,所以把t=-2和t=2兩個數(shù)代入p=(log2x-1)t+(log2x)2-2log2x+1中,令p都大于0,由此得到一個不等式組,解這個不等式組就能得到答案.
解答:解:p=(log2x-1)t+(log2x)2-2log2x+1,∵t∈[-2,2]時p恒為正值,

解得log2x<-1或log2x>3,
即0<x<或x>8.
點(diǎn)評:充分控掘題設(shè)中的隱含條件,恰當(dāng)?shù)亟⒉坏仁浇M是準(zhǔn)確解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:log2x<0,q:(
1
2
)x-1>1,則p是q
的( 。
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p=(log2x)2+(t-2)log2x-t+1,若t在區(qū)間[-2,2]上變動時,p恒為正值,試求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三高考壓軸理科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)p:log2x<0,q: x1>1,則p是q的 (  ).

A.充要條件         B.充分不必要條件    C.必要不充分條件    D.既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)p=(log2x)2+(t-2)log2x-t+1,若t在區(qū)間[-2,2]上變動時,p恒為正值,試求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)p:log2x<0,q:(
1
2
)x-1>1,則p是q
的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案