拋物線 x2=y的準(zhǔn)線方程是( 。
A、4x+1=0
B、4y+1=0
C、2x+1=0
D、2y+1=0
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:先根據(jù)拋物線的標(biāo)準(zhǔn)方程得到焦點(diǎn)在y軸上以及2p=1,再直接代入即可求出其準(zhǔn)線方程.
解答: 解:因?yàn)閽佄锞的標(biāo)準(zhǔn)方程為:x2=y,焦點(diǎn)在y軸上;
所以:2p=1,即p=
1
2

所以:
p
2
=
1
4
,
∴準(zhǔn)線方程 y=-
1
4
,即4y+1=0.
故選:B
點(diǎn)評(píng):本題主要考查拋物線的基本性質(zhì).解決拋物線的題目時(shí),一定要先判斷焦點(diǎn)所在位置.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-x,x<0
x
,x≥0
,若關(guān)于x的方程f(x)=a(x+1)有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A、[
1
2
,+∞)
B、(0,+∞)
C、C(0,1)
D、(0,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C:
x2
a
2
n
-y2=1(an>0,n∈N*)的一個(gè)焦點(diǎn)為F(
n2+1
,0).
(1)求an,
(2)令bn=
1
anan+1
,Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定點(diǎn)A、B,且|AB|=2,動(dòng)點(diǎn)P滿足|PA|-|PB|=1,則點(diǎn)P的軌跡為( 。
A、雙曲線B、雙曲線一支
C、兩條射線D、一條射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},a1=1且an-1-an=an-1an(n≥2,n∈N*),則Tn=a1a2+a2a3+…+anan-1的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{
1
4n2-1
}(n∈N*)的前n項(xiàng)的和Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=Asin(ωx+
π
2
)+b(A>0,ω>0)的最小正周期為
π
2
,在一個(gè)周期內(nèi)最大值和最小值之和為2,且方程f(x)=A的三個(gè)最小的不同正根按照從小到大的順序恰好構(gòu)成等比數(shù)列.
(1)試求函數(shù)f(x)的解析式;
(2)將y=f(x)的圖象向下平移一個(gè)單位,再向左平移
π
12
個(gè)單位,得到函數(shù)y=g(x),試在如圖所給的直角坐標(biāo)系中畫出函數(shù)y=g(x)在一個(gè)周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin7°cos37°-sin83°cos53°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市第一季度的月總產(chǎn)值分別100、120、130億元,為了估測(cè)以后每個(gè)月的總產(chǎn)值,以這三個(gè)月的產(chǎn)量為依據(jù),用一個(gè)函數(shù)模擬產(chǎn)品的月總產(chǎn)值y(億元)與月份x的關(guān)系.模擬函數(shù)擬用二次函數(shù)和函數(shù)y=m•nx+t,(其中m,n,t為常數(shù)).已知4月份的產(chǎn)量為136億元,通過(guò)計(jì)算說(shuō)明選用哪一個(gè)函數(shù)作為模擬函數(shù)比較合理,為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案