橢圓的焦點在y軸上,一個焦點到長軸的兩端點的距離之比是1∶4, 短軸長為8, 則橢圓的標準方程是               ;
依題意可得,解得。因為橢圓焦點在軸上,所以標準方程為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分14分)
已知橢圓的左焦點為,離心率e=,M、N是橢圓上的動
點。
(Ⅰ)求橢圓標準方程;
(Ⅱ)設動點P滿足:,直線OM與ON的斜率之積為,問:是否存在定點,
使得為定值?,若存在,求出的坐標,若不存在,說明理由。
(Ⅲ)若在第一象限,且點關于原點對稱,點軸上的射影為,連接 并延長
交橢圓于點,證明:;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)如圖,點為圓形紙片內不同于圓心的定點,動點在圓周上,將紙片折起,使點與點重合,設折痕交線段于點.現(xiàn)將圓形紙片放在平面直角坐標系中,設圓,記點的軌跡為曲線.
⑴證明曲線是橢圓,并寫出當時該橢圓的標準方程;
⑵設直線過點和橢圓的上頂點,點關于直線的對稱點為點,若橢圓的離心率,求點的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在雙曲線中,,且雙曲線與橢圓有公共焦點,則雙曲線的方程是(         )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓,且為常數(shù)),橢圓焦點在軸上,橢圓的長軸長與橢圓的短軸長相等,且橢圓與橢圓的離心率相等,則橢圓的方程為:                .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的長軸長為4,離心率為,分別為其左右焦點.一動圓過點,且與直線相切.
(Ⅰ)(。┣髾E圓的方程; (ⅱ)求動圓圓心軌跡的方程;
(Ⅱ) 在曲線上有兩點,橢圓上有兩點,滿足共線,共線,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過點的橢圓的離心率為,橢圓與軸交于兩點,過點的直線與橢圓交于另一點,并與軸交于點,直線與直線交于點
(1)當直線過橢圓的右焦點時,求線段的長;
(2)當點異于點時,求證:為定值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓(a>b>0)的離心率,過頂點A、B的直線與原點的距離為

(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切.
(1)求橢圓C的方程;
(2)設軸對稱的任意兩個不同的點,連結交橢圓于另一點,證明:直線x軸相交于定點;
(3)在(2)的條件下,過點的直線與橢圓交于、兩點,求的取值范圍.

查看答案和解析>>

同步練習冊答案