分析:(Ⅰ)由題意,求出函數(shù)
f(x)=的導(dǎo)數(shù),再由曲線y=f(x)在點(diǎn)(1,f(1))處的切線與x軸平行可得出f′(1)=0,由此方程即可解出k的值;
(II)由(I)知,
f′(x)==
,x∈(0,+∞),利用導(dǎo)數(shù)解出函數(shù)的單調(diào)區(qū)間即可;
(III)先給出g(x)=xf'(x),考查解析式發(fā)現(xiàn)當(dāng)x≥1時(shí),g(x)=xf'(x)≤0<1+e
-2一定成立,由此將問(wèn)題轉(zhuǎn)化為證明g(x)<1+e
-2在0<x<1時(shí)成立,利用導(dǎo)數(shù)求出函數(shù)在(0,1)上的最值,與1+e
-2比較即可得出要證的結(jié)論.
解答:解:(I)函數(shù)
f(x)=(k為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),
∴
f′(x)==
,x∈(0,+∞),
由已知,
f′(1)==0,∴k=1.
(II)由(I)知,
f′(x)==
,x∈(0,+∞),
設(shè)h(x)=1-xlnx-x,x∈(0,+∞),h'(x)=-(lnx+2),
當(dāng)x∈(0,e
-2)時(shí),h'(x)>0,當(dāng)x∈( e
-2,1)時(shí),h'(x)<0,
可得h(x)在x∈(0,e
-2)時(shí)是增函數(shù),在x∈( e
-2,1)時(shí)是減函數(shù),在(1,+∞)上是減函數(shù),
又h(1)=0,h(e
-2)>0,又x趨向于0時(shí),h(x)的函數(shù)值趨向于1
∴當(dāng)0<x<1時(shí),h(x)>0,從而f'(x)>0,
當(dāng)x>1時(shí)h(x)<0,從而f'(x)<0.
綜上可知,f(x)的單調(diào)遞增區(qū)間是(0,1),單調(diào)遞減區(qū)間是(1,+∞).
(III)由(II)可知,當(dāng)x≥1時(shí),g(x)=xf'(x)≤0<1+e
-2,故只需證明g(x)<1+e
-2在0<x<1時(shí)成立.
當(dāng)0<x<1時(shí),e
x>1,且g(x)>0,∴
g(x)=<1-xlnx-x.
設(shè)F(x)=1-xlnx-x,x∈(0,1),則F'(x)=-(lnx+2),
當(dāng)x∈(0,e
-2)時(shí),F(xiàn)'(x)>0,當(dāng)x∈( e
-2,1)時(shí),F(xiàn)'(x)<0,
所以當(dāng)x=e
-2時(shí),F(xiàn)(x)取得最大值F(e
-2)=1+e
-2.
所以g(x)<F(x)≤1+e
-2.
綜上,對(duì)任意x>0,g(x)<1+e
-2.