通過研究學(xué)生的學(xué)習(xí)行為,專家發(fā)現(xiàn),學(xué)生的注意力著老師講課時(shí)間的變化而變化,講課開始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,設(shè)f(t)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過實(shí)驗(yàn)分析得知:f(t)=
(1)講課開始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?
(2)講課開始后5分鐘與講課開始后25分鐘比較,何時(shí)學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過適當(dāng)安排,教師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?
【答案】分析:(1)分類討論:①當(dāng)0<t≤10時(shí),②當(dāng)20<t≤40時(shí),分別求出各段上函數(shù)的最大值,從而得出講課開始多少分鐘,學(xué)生的注意力最集中;
(2)欲比較講課開始后5分鐘與講課開始后25分鐘,何時(shí)學(xué)生的注意力更集中,只須分別求得函數(shù)值f(5)和f(25)比較它們的大小即可;
(3)分兩種情形:①當(dāng)0<t≤10時(shí),②當(dāng)20<t≤40時(shí),函數(shù)值為180對應(yīng)的t值,則可計(jì)算出學(xué)生注意力在180以上所持續(xù)的時(shí)間
即可看出是否經(jīng)過適當(dāng)安排,老師可以在學(xué)生達(dá)到所需要的狀態(tài)下講授完這道題.
解答:解:(1)當(dāng)0<t≤10時(shí),f(t)=-t2+24t+100
=-(t-12)2+244是增函數(shù),且f(10)=240;
當(dāng)20<t≤40時(shí),f(t)=-7t+380是減函數(shù),
且f(20)=240.
所以,講課開始10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘.
(2)f(5)=195,f(25)=205,
故講課開始25分鐘時(shí),學(xué)生的注意力比講課開始后5分鐘更集中.
(3)當(dāng)0<t≤10時(shí),f(t)=-t2+24t+100=180,則t=4;
當(dāng)20<t≤40時(shí),令f(t)=-7t+380=180,
t≈28.57,則學(xué)生注意力在180以上所持續(xù)的時(shí)間
28.57-4=24.57>24,
所以,經(jīng)過適當(dāng)安排,老師可以在學(xué)生達(dá)到所需要的狀態(tài)下講授完這道題.
點(diǎn)評:構(gòu)造二次函數(shù)模型,函數(shù)解析式求解是關(guān)鍵,解決實(shí)際問題通常有四個(gè)步驟:(1)閱讀理解,認(rèn)真審題;(2)引進(jìn)數(shù)學(xué)符號,建立數(shù)學(xué)模型;(3)利用數(shù)學(xué)的方法,得到數(shù)學(xué)結(jié)果;(4)轉(zhuǎn)譯成具體問題作出解答,其中關(guān)鍵是建立數(shù)學(xué)模型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

通過研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生接受能力依賴于老師引入概念和描述問題所用的時(shí)間,講座開始時(shí),學(xué)生的興趣激增,中間有一段不太長的時(shí)間,學(xué)生的興趣保持理想的狀態(tài),隨后學(xué)生的注意力開始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力(f(x)的值越大,表示接受能力越強(qiáng)),x表示提出和講授概念的時(shí)間(單位:分),可以有以下公式:
-0.1x2+2.6x+43(0<x≤10)
59(10<x≤16)
-3x+107(16<x≤30)

(1)開講多少分鐘后,學(xué)生的接受能力最強(qiáng)?能維持多少分鐘?
(2)開講5分鐘與開講15分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?
(3)一個(gè)數(shù)學(xué)難題,需要55的接受能力以及10分鐘的時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

通過研究學(xué)生的學(xué)習(xí)行為,專家發(fā)現(xiàn),學(xué)生的注意力著老師講課時(shí)間的變化而變化,講課開始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,設(shè)f(t)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過實(shí)驗(yàn)分析得知:f(t)=
-t2+24t+100,0<t≤10
240,10<t≤20
-7t+380,20<t≤40

(1)講課開始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?
(2)講課開始后5分鐘與講課開始后25分鐘比較,何時(shí)學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過適當(dāng)安排,教師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

通過研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于教師引入概念和描述問題所用的時(shí)間.講座開始時(shí),學(xué)生的興趣激增;中間有一段不太長的時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生的接受能力,x表示引入概念和描述問題所用的時(shí)間(單位:分鐘),可有以下的公式:
f(x)=
-0.1x2+2.6x+43,0<x≤10
59,10<x≤16
-3x+107,16<x≤30.

(1)開講后多少分鐘,學(xué)生的接受能力最強(qiáng)?能維持多長時(shí)間?
(2)一道數(shù)學(xué)難題,需要55的接受能力以及13分鐘,教師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這道難題?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

通過研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問題所用的時(shí)間.授課開始時(shí),學(xué)生的興趣激增,中間有一段不太長的時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生注意力開始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力,x表示提出和講授概念的時(shí)間(單位:分),可有以下的關(guān)系:f(x)=
-0.1x2+2.6x+43(0<x≤10)
59                            (10<x≤16)
-2x+91                 (16<x≤40)

(1)開講后多少分鐘,學(xué)生的接受能力最強(qiáng)?這個(gè)強(qiáng)度可以持續(xù)多長時(shí)間?
(2)開講后5分鐘與開講后20分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?
(3)一道數(shù)學(xué)難題,需要55的接受能力以及13分鐘的時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

通過研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生接受能力依賴于老師引入概念和描述問題所用的時(shí)間,講座開始時(shí),學(xué)生的興趣激增,中間有一段不太長的時(shí)間,學(xué)生的興趣保持理想的狀態(tài),隨后學(xué)生的注意力開始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力(f(x)的值越大,表示接受能力越強(qiáng)),x表示提出和講授概念的時(shí)間(單位:分),可以有以下公式:f(x)=
-0.1x2+2.6x+43
59
-3x+107
(0<x≤10)
(10<x≤16)
(16<x≤30)

(1)開講多少分鐘后,學(xué)生的接受能力最強(qiáng)?能維持多少分鐘?
(2)開講5分鐘與開講20分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?
(3)一個(gè)數(shù)學(xué)難題,需要55的接受能力以及13分鐘的時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題?

查看答案和解析>>

同步練習(xí)冊答案