試求函數(shù)y=sin2x+cos2(x-
π
3
)的單調(diào)增區(qū)間.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用二倍角公式和兩角和公式對(duì)函數(shù)解析式化簡整理,然后利用三角函數(shù)的性質(zhì)求得其增區(qū)間.
解答: 解:y=sin2x+cos2(x-
π
3

=
1-cos2x+cos(2x-
3
)+1
2

=
1
2
cos(2x-
3
)-
1
2
cos2x+1
=
1
2
(-
1
2
cos2x+
3
2
sin2x-cos2x)+1
=
1
2
3
2
sin2x-
3
2
cos2x)+1
=
3
2
sin(2x-
π
3
)+1,
當(dāng)2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
(k∈Z)時(shí),即kπ-
π
12
≤x≤kπ+
12
(k∈Z)時(shí),函數(shù)單調(diào)增.
∴增區(qū)間為[kπ-
π
12
,kπ+
12
](k∈Z).
點(diǎn)評(píng):本題主要考查了三角函數(shù)的恒等變換的應(yīng)用.運(yùn)用兩角和與差角三角函數(shù)公式的關(guān)鍵是熟記公式,我們不僅要記住公式,更重要的是抓住公式的特征,如角的關(guān)系,次數(shù)關(guān)系,三角函數(shù)名等抓住公式的結(jié)構(gòu)特征對(duì)提高記憶公式的效率起到至關(guān)重要的作用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面是一個(gè)2×2列聯(lián)表:
y1 y2 合計(jì)
x1 a c 73
x2 22 25 47
合計(jì) b 46 120
則表中a,b的值分別為( 。
A、94,72
B、52,50
C、52,74
D、74,52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知(1+2i)
.
z
=4+3i,求z.
(2)計(jì)算由曲線y=x2-2x+3與直線y=x+3所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知λ∈R,函數(shù)f(x)=lnx-
λ(x-1)
x+λ-1
,其中x∈[1,+∞).
(Ⅰ)當(dāng)λ=2時(shí),求f(x)的最小值;
(Ⅱ)在函數(shù)y=lnx的圖象上取點(diǎn)Pn(n,lnn)(n∈N*),記線段PnPn+1的斜率為kn,Sn=
1
k1
+
1
k2
+…+
1
kn
.對(duì)任意正整數(shù)n,試證明:
(。㏒n
n(n+2)
2
;           
(ⅱ)Sn
n(3n+5)
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,其右焦點(diǎn)F與橢圓Γ的左頂點(diǎn)的距離是3.兩條直線l1,l2交于點(diǎn)F,其斜率k1,k2滿足k1k2=-
3
4
.設(shè)l1交橢圓Γ于A、C兩點(diǎn),l2交橢圓Γ于B、D兩點(diǎn).
(Ⅰ)求橢圓Γ的方程;
(Ⅱ)寫出線段AC的長|AC|關(guān)于k1的函數(shù)表達(dá)式,并求四邊形ABCD面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正四棱錐P-ABCD中,PA=AB=
2
,點(diǎn)M,N分別在線段PA和BD上,BN=
1
3
BD.
(1)若PM=
1
3
PA,求證:MN⊥AD;
(2)若二面角M-BD-A的大小為
π
4
,求線段MN的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

小明早上從家里出發(fā)到學(xué)校上課,如圖所示,有兩條路線可走,且走哪條路線的可能性是相同的,圖中A、B、C、D處都有紅綠燈,小明在每個(gè)紅綠燈處遇到紅燈的概率都是
1
3
,且各個(gè)紅綠燈處遇到紅燈的事件是相互獨(dú)立的,每次遇到紅燈都需等候10秒.
(1)求小明沒有遇到紅燈的概率;
(2)記小明等候的總時(shí)間為ξ,求ξ的分布列并求數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:當(dāng)x∈[0,1]時(shí),
2
2
x≤sinx≤x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過拋物線y2=2px(p>0)的焦點(diǎn)F的直線l與拋物線交于A,B兩點(diǎn),求證:
1
FA
+
1
FB
=
2
p

查看答案和解析>>

同步練習(xí)冊答案