【題目】已知函數(shù).
(1)若是的極值點,求a的值及的單調(diào)區(qū)間;
(2)若對任意,不等式成立,求a的取值范圍.
【答案】(1)在上單減,在上單增. (2)
【解析】
(1)求導,由,求出的值,代回,分析單調(diào)性以及,求出的解,即可得出結論;
(2)注意,若在為增函數(shù),不等式恒成立,若在為減函數(shù),則不等式不恒成立,將問題轉(zhuǎn)化為研究在上的單調(diào)性,求出,對分類討論,求出在正負情況,即可求出的取值范圍.
解:(1)
,
顯然在上單調(diào)遞增,
又,
所以當時,,
當時,,
故在上單減,在上單增.
(2),
當時,,在上單增,
則,滿足題意;
當時,,
在上單調(diào)遞增,,
①若,則,在上單增,
則,滿足題意;
②若,則,
故必存在使得,
從而在上單減,在上單增,
,與題意矛盾;
綜上所述,.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,,是軸上關于原點對稱的兩定點,點滿足,點的軌跡為曲線.
(1)求的方程;
(2)過的直線與交于點,線段的中點為,的中垂線分別與軸、軸交于點,問是否成立?若成立,求出直線的方程;若不成立,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,數(shù)列中的每一項均在集合中,且任意兩項不相等,又對于任意的整數(shù),均有.例如時,數(shù)列為或.
(1)當時,試求滿足條件的數(shù)列的個數(shù);
(2)當,求所有滿足條件的數(shù)列的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知點,的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求的普通方程和的直角坐標方程;
(2)設曲線與曲線相交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了讓居民了解垃圾分類,養(yǎng)成垃圾分類的習慣,讓綠色環(huán)保理念深入人心.某市將垃圾分為四類:可回收物,餐廚垃圾,有害垃圾和其他垃圾.某班按此四類由10位同學組成四個宣傳小組,其中可回收物與餐廚垃圾宣傳小組各有2位同學,有害垃圾與其他垃圾宣傳小組各有3位同學.現(xiàn)從這10位同學中選派5人到某小區(qū)進行宣傳活動,則每個宣傳小組至少選派1人的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】古希臘數(shù)學家阿波羅尼奧斯發(fā)現(xiàn):平面上到兩定點,距離之比為常數(shù)且的點的軌跡是一個圓心在直線上的圓,該圓簡稱為阿氏圓.根據(jù)以上信息,解決下面的問題:如圖,在長方體中,,點在棱上,,動點滿足.若點在平面內(nèi)運動,則點所形成的阿氏圓的半徑為________;若點在長方體內(nèi)部運動,為棱的中點,為的中點,則三棱錐的體積的最小值為___________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】天津市某學校組織教師進行“學習強國”知識競賽,規(guī)則為:每位參賽教師都要回答3個問題,且對這三個問題回答正確與否相互之間互不影響,若每答對1個問題,得1分;答錯,得0分,最后按照得分多少排出名次,并分一、二、三等獎分別給予獎勵.已知對給出的3個問題,教師甲答對的概率分別為,,p.若教師甲恰好答對3個問題的概率是,則________;在前述條件下,設隨機變量X表示教師甲答對題目的個數(shù),則X的數(shù)學期望為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若a=5sin(B),c=5且O為△ABC的外心,G為△ABC的重心,則OG的最小值為( )
A.1B.C.1D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com