如圖,,為圓柱的母線,是底面圓的直徑,,分別是,的中點(diǎn),.
(1)證明:;
(2)證明:;
(3)假設(shè)這是個(gè)大容器,有條體積可以忽略不計(jì)的小魚能在容器的任意地方游弋,如果魚游到四棱錐 內(nèi)會(huì)有被捕的危險(xiǎn),求魚被捕的概率.
(1)見解析 (2)見解析 (3)
【解析】(1)證明:連結(jié),,分別為的中點(diǎn),∴.又,且.∴四邊形是平行四邊形,
即. ∴. (2) 證明:,為圓柱的母線,所以
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719511446115204/SYS201411171951156486413559_DA/SYS201411171951156486413559_DA.016.png">垂直于圓所在平面,故,
又是底面圓的直徑,所以,,所以,
由,所以.
(3)【解析】
魚被捕的概率等于四棱錐與圓柱的體積比,
由,且由(1)知.∴,
∴ ,∴.因是底面圓的直徑,得,且,
∴,即為四棱錐的高.設(shè)圓柱高為,底半徑為,
則,,
∴:,即 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科二項(xiàng)式定理與性質(zhì)(解析版) 題型:選擇題
在的展開式中,的系數(shù)是( )
A.-297 B.-252 C.297 D.207
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文空間線面平行、面面平行、線面垂直、面面垂直(解析版) 題型:選擇題
已知m,n為異面直線,m⊥平面α,n⊥平面β.直線l滿足l⊥m,l⊥n,l?α,l?β,則( )
A.α∥β且l∥α
B.α⊥β且l⊥β
C.α與β相交,且交線垂直于l
D.α與β相交,且交線平行于l
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測題(解析版) 題型:解答題
已知.
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若 求函數(shù)的單調(diào)區(qū)間;
(3)若不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測題(解析版) 題型:解答題
已知橢圓,為坐標(biāo)原點(diǎn),橢圓的右準(zhǔn)線與軸的交點(diǎn)是.
(1)點(diǎn)在已知橢圓上,動(dòng)點(diǎn)滿足,求動(dòng)點(diǎn)的軌跡方程;
(2)過橢圓右焦點(diǎn)的直線與橢圓交于點(diǎn),求的面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測題(解析版) 題型:解答題
設(shè)分別是橢圓的 左,右焦點(diǎn)。
(1)若P是該橢圓上一個(gè)動(dòng)點(diǎn),求的 最大值和最小值。
(2)設(shè)過定點(diǎn)M(0,2)的 直線l與橢圓交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l斜率k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科集合的表示、集合的運(yùn)算、集合間的運(yùn)算關(guān)系(解析版) 題型:選擇題
集合,則( )
A. (1,2)
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科選擇題專項(xiàng)訓(xùn)練(解析版) 題型:選擇題
函數(shù)已知時(shí)取得極值,則的值等于( )
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科解答題前三題(解析版) 題型:解答題
三棱柱的直觀圖和三視圖如下圖所示,其側(cè)視圖為正三角形(單位cm)
⑴當(dāng)x=4時(shí),求幾何體的側(cè)面積和體積
⑵當(dāng)x取何值時(shí),直線AB1與平面BB1C1C和平面A1B1C1所成角大小相等。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com