如圖,平面平面,四邊形為矩形,的中點(diǎn),

(1)求證:;

(2)若時(shí),求二面角的余弦值.

 

(1)證明過(guò)程詳見(jiàn)解析;(2)

【解析】

試題分析:本題主要考查線線垂直、線面垂直、面面垂直、向量法等基礎(chǔ)知識(shí),考查學(xué)生的空間想象能力、邏輯推理能力、計(jì)算能力.第一問(wèn),連結(jié)OC,由于為等腰三角形,O為AB的中點(diǎn),所以,利用面面垂直的性質(zhì),得平面ABEF,利用線面垂直的性質(zhì)得,由線面垂直的判定得平面OEC,所以,所以線面垂直的判定得平面,最后利用線面垂直的性質(zhì)得;第二問(wèn),利用向量法,先建立空間直角坐標(biāo)系,求出平面FCE和平面CEB的法向量,再利用夾角公式求二面角的余弦值,但是需要判斷二面角是銳角還是鈍角.

試題解析:(1)證明:連結(jié)OC,因AC=BC,O是AB的中點(diǎn),故

又因平面ABC平面ABEF,故平面ABEF, 2分

于是.又,所以平面OEC,所以, 4分

又因,故平面,所以. 6分

(2)由(1),得,不妨設(shè),,取EF的中點(diǎn)D,以O(shè)為原點(diǎn),OC,OB,OD所在的直線分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),則,

在的直線分別為軸,建立空間直角坐標(biāo)系,

從而設(shè)平面的法向量,由,得, 9分

同理可求得平面的法向量,設(shè)的夾角為,則,由于二面角為鈍二面角,則余弦值為 13分

考點(diǎn):線線垂直、線面垂直、面面垂直、向量法.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省高三高考?jí)狠S文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,,為圓柱的母線,是底面圓的直徑,,分別是,的中點(diǎn),

(1)證明:;

(2)證明:;

(3)假設(shè)這是個(gè)大容器,有條體積可以忽略不計(jì)的小魚(yú)能在容器的任意地方游弋,如果魚(yú)游到四棱錐 內(nèi)會(huì)有被捕的危險(xiǎn),求魚(yú)被捕的概率.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省福州市高三5月綜合練習(xí)理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知集合,,則“”是“”的( )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省福州市高三5月綜合練習(xí)文科數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)(0≤x≤9)的最大值與最小值的和為( ).

A. B.0 C.-1 D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省高考考前模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

對(duì)于x∈R,不等式|x-1|+|x-2|≥2+2恒成立,試求2+的最大值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省高考考前模擬理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知的三個(gè)內(nèi)角所對(duì)的邊分別為.若△的面積,則的值是 。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省高考考前模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題

某流程圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是( 。

A. B.

C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省高考考前模擬文科數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖是某幾何體的三視圖,其中正視圖、左視圖均為正方形,俯視圖是腰長(zhǎng)為2 的等腰三角腰形,則該幾何體的體積是( )

A. B. C. D.4

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省廈門市高三5月適應(yīng)性考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

中, 邊上的高,給出下列結(jié)論:

; ②; ③

其中結(jié)論正確的個(gè)數(shù)是( )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案