【題目】小王于2015年底貸款購置了一套房子,根據(jù)家庭收入情況,小王選擇了10年期每月還款數(shù)額相同的還貸方式,且截止2019年底,他沒有再購買第二套房子.下圖是2016年和2019年小王的家庭收入用于各項支出的比例分配圖,根據(jù)以上信息,判斷下列結(jié)論中正確的是(

A.小王一家2019年用于飲食的支出費用跟2016年相同

B.小王一家2019年用于其他方面的支出費用是2016年的3

C.小王一家2019年的家庭收入比2016年增加了1

D.小王一家2019年用于房貸的支出費用比2016年減少了

【答案】B

【解析】

因為小王每月還款數(shù)額相同,2016年占比60%2019年占比40%,說明2019年收入大于2016年收入,設(shè)2016年收入為,2019年收入為,,即,

根據(jù)這兩年的收入的關(guān)系,判斷選項.

因為小王每月還款數(shù)額相同,2016年占比60%,2019年占比40%,說明2019年收入大于2016年收入,設(shè)2016年收入為,2019年收入為,,即

A.2016年和2019年,雖然飲食占比都是25%,但收入不同,所以支出費用不同,所以A不正確;

B.2016年的其他方面的支出費用是2019年其他方面的支出費用是,所以B正確;

C.因為 ,所以小王一家2019年的家庭收入比2016年增加了1.5倍,所以C不正確;

D.房貸占收入的比例減少了,但支出費用是不變的,所以D不正確.

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓的焦點在軸上.

1)若橢圓的焦距為1,求橢圓的方程;

2)設(shè)分別是橢圓的左、右焦點,為橢圓上的第一象限內(nèi)的點,直線軸與點,并且,證明:當變化時,點在某定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓的右頂點到直線的距離為3.

1)求橢圓的方程;

2)過點的直線與橢圓交于兩點,求的面積的最大值(為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)若點在直線上,且,求直線的斜率;

2)若,求曲線上的點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新冠肺炎期間某商場開通三種平臺銷售商品,收集一月內(nèi)的數(shù)據(jù)如圖1;為了解消費者對各平臺銷售方式的滿意程度,該商場用分層抽樣的方法抽取4%的顧客進行滿意度調(diào)查,得到的數(shù)據(jù)如圖2.下列說法錯誤的是(

A.樣本容量為240

B.若樣本中對平臺三滿意的人數(shù)為40,則

C.總體中對平臺二滿意的消費者人數(shù)約為300

D.樣本中對平臺一滿意的人數(shù)為24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,,,為等邊三角形,是棱上一點.

1)證明:

2)若平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)若直線是曲線的一條切線,求k的值;

2)當時,直線與曲線無交點,求整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,已知,的平分線,且棱錐的三個側(cè)面與底面都成角,求棱錐的側(cè)面積與體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中e是自然對數(shù)的底數(shù),

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè),討論函數(shù)零點的個數(shù),并說明理由.

查看答案和解析>>

同步練習冊答案