【題目】某大學(xué)的名同學(xué)準(zhǔn)備拼車去旅游,其中大一、大二、大三、大四每個年級各兩名,分乘甲、乙兩輛汽車.每車限坐名同學(xué)(乘同一輛車的名同學(xué)不考慮位置),其中大一的孿生姐妹需乘同一輛車,則乘坐甲車的名同學(xué)中恰有名同學(xué)是來自于同一年級的乘坐方式共有_______種(有數(shù)字作答).

【答案】24

【解析】

由題意,第一類,大一的孿生姐妹在甲車上,甲車上剩下兩個要來自不同的年級,從三個年級中選兩個為,然后分別從選擇的年級中再選擇一個學(xué)生,為,故有=3×2×2=12種.

第二類,大一的孿生姐妹不在甲車上,則從剩下的3個年級中選擇一個年級的兩名同學(xué)在甲車上,為,然后再從剩下的兩個年級中分別選擇一人(同第一類情況),這時共有=3×2×2=12

因此共有24種不同的乘車方式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知的頂點(diǎn),邊上中線所在直線方程為,邊上的高所在直線方程為,求:

1)頂點(diǎn)的坐標(biāo);

2)求外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為慶祝國慶節(jié),某中學(xué)團(tuán)委組織了歌頌祖國,愛我中華知識競賽,從參加考試的學(xué)生中抽出60名,將其成績(成績均為整數(shù))分成[4050),[5060),,[90,100)六組,并畫出如圖所示的部分頻率分布直方圖,觀察圖形,回答下列問題:

1)求第四組的頻率,并補(bǔ)全這個頻率分布直方圖;

2)請根據(jù)頻率分布直方圖,估計樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某帆船中心比賽場館區(qū)的海面上每天海浪高度y(米)可看作時間(單位:小時)的函數(shù),記作,經(jīng)過長期觀測,的曲線可近似地看成是函數(shù),下列是某日各時的浪高數(shù)據(jù).

t/小時

0

3

6

9

12

15

18

21

24

y/

1

1

1

1

1)根據(jù)以上數(shù)據(jù),求出的解析式;

2)為保證安全比賽時的浪高不能高于米,則在一天中的哪些時間可以進(jìn)行比賽.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四名工人一天中生產(chǎn)零件的情況如圖所示,每個點(diǎn)的橫、縱坐標(biāo)分別表示該工人一天中生產(chǎn)

的Ⅰ型、Ⅱ型零件數(shù),有下列說法:

四個工人中,的日生產(chǎn)零件總數(shù)最大

日生產(chǎn)零件總數(shù)之和小于日生產(chǎn)零件總數(shù)之和

日生產(chǎn)Ⅰ型零件總數(shù)之和小于Ⅱ型零件總數(shù)之和

日生產(chǎn)Ⅰ型零件總數(shù)之和小于Ⅱ型零件總數(shù)之和

則正確的說法有__________(寫出所有正確說法的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知、是橢圓的左、右焦點(diǎn),直線經(jīng)過左焦點(diǎn),且與 橢圓兩點(diǎn),的周長為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)是否存在直線,使得為等腰直角三角形?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在斜三棱柱中,底面是等腰三角形,,的中點(diǎn),側(cè)面底面.

1)求證:

2)過側(cè)面的對角線的平面交側(cè)棱于點(diǎn),若,求證:截面側(cè)面;

3)若截面平面,成立嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市環(huán)保部門對該市市民進(jìn)行了一次垃圾分類知識的網(wǎng)絡(luò)問卷調(diào)查,每一位市民僅有一次參加機(jī)會,通過隨機(jī)抽樣,得到參加問卷調(diào)查的人的得分(滿分:分)數(shù)據(jù),統(tǒng)計結(jié)果如下表所示.

組別

頻數(shù)

1)已知此次問卷調(diào)查的得分服從正態(tài)分布,近似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表),請利用正態(tài)分布的知識求;

2)在(1)的條件下,環(huán)保部門為此次參加問卷調(diào)查的市民制定如下獎勵方案.

)得分不低于的可以獲贈次隨機(jī)話費(fèi),得分低于的可以獲贈次隨機(jī)話費(fèi);

)每次贈送的隨機(jī)話費(fèi)和相應(yīng)的概率如下表.

贈送的隨機(jī)話費(fèi)/

概率

現(xiàn)市民甲要參加此次問卷調(diào)查,記為該市民參加問卷調(diào)查獲贈的話費(fèi),求的分布列及數(shù)學(xué)期望.

附:,若,則,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今年4月23日我市正式宣布實(shí)施“3+1+2”的高考新方案,“3”是指必考的語文、數(shù)學(xué)、外語三門學(xué)科,“1”是指在物理和歷史中必選一科,“2”是指在化學(xué)、生物、政治、地理四科中任選兩科.為了解我校高一學(xué)生在物理和歷史中的選科意愿情況,進(jìn)行了一次模擬選科. 已知我校高一參與物理和歷史選科的有1800名學(xué)生,其中男生1000人,女生800人. 按分層抽樣的方法從中抽取了36個樣本,統(tǒng)計知其中有17個男生選物理,6個女生選歷史.

(I)根據(jù)所抽取的樣本數(shù)據(jù),填寫答題卷中的列聯(lián)表. 并根據(jù)統(tǒng)計量判斷能否有的把握認(rèn)為選擇物理還是歷史與性別有關(guān)?

(II)在樣本里選歷史的人中任選4人,記選出4人中男生有人,女生有人,求隨機(jī)變量 的分布列和數(shù)學(xué)期望.(的計算公式見下),臨界值表:

查看答案和解析>>

同步練習(xí)冊答案