(08年金華一中理)   (14分)

已知函數(shù)。

(1)若上是減函數(shù),求實數(shù)的取值范圍;

(2)當時,對任意的,不等式恒成立,求實數(shù)的取值范圍。

解析:(1),據(jù)題意有上恒成立。

,則u的最小值是-5。

!6分

(2)

 

 

 

 

 

 

 

 

 

時,,上是減函數(shù),于是

,由

,所以!14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年金華一中理)    (14分) 9粒種子分種在甲、乙、丙3個坑內(nèi),每坑3粒,每粒種子發(fā)芽的概率為0.5,若一個坑內(nèi)至少有1粒種子發(fā)芽,則這個坑不需要補種;若一個坑內(nèi)的種子都沒有發(fā)芽,則這個坑需要補種。

(1)求甲坑不需要補種的概率;

(2)求3個坑中恰有1個坑不需要補種的概率;

    (3)求有坑需要補種的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年金華一中理)  (15分) 動圓過定點且與直線相切,圓心的軌跡為曲線,過作曲線兩條互相垂直的弦,設的中點分別為、。

(1)求曲線的方程;

(2)求證:直線必過定點;

(3)分別以為直徑作圓,求兩圓相交弦中點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年金華一中理)  (15分) 動圓過定點且與直線相切,圓心的軌跡為曲線,過作曲線兩條互相垂直的弦,設的中點分別為、。

(1)求曲線的方程;

(2)求證:直線必過定點;

(3)分別以為直徑作圓,求兩圓相交弦中點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年金華一中理)  15分) 已知函數(shù),滿足:

①對任意都有;②對任意都有.

 

(1)試證明:上的單調(diào)增函數(shù);

(2)求;

   (3)令,試證明:

查看答案和解析>>

同步練習冊答案