(2011•深圳二模)設(shè)A={(a,c)|0<a<2,0<c<2,a,c∈R},則任。╝,c)∈A,關(guān)于x的方程ax2+2x+c=0有實(shí)根的概率為( 。
分析:確定方程有實(shí)根時(shí),滿足的不等式,作出圖象,求出相應(yīng)的面積,即可求得概率.
解答:解:若方程有實(shí)根,則△=22-4ac≥0,∴ac≤1.
∵A={(a,c)|0<a<2,0<c<2,a,c∈R},總事件表示的面積為2×2=4.
方程有實(shí)根時(shí),表示的面積為2×
1
2
+
2
1
2
1
a
da
=1+lna
|
2
1
2
=1+2ln2
∴有實(shí)根的概率為
1+2ln2
4

故選C.
點(diǎn)評(píng):本題考查概率的計(jì)算,正確計(jì)算面積,以面積為測度計(jì)算概率是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•深圳二模)甲,乙,丙三名運(yùn)動(dòng)員在某次測試中各射擊20次,三人測試成績的頻率分布條形圖分別如圖1,圖2和圖3,若s,s,s分別表示他們測試成績的標(biāo)準(zhǔn)差,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•深圳二模)已知雙曲線
x2
a2
-
y2
b2
=1
的一條漸近線方程為y=
3
4
x
,則此雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•深圳二模)設(shè)函數(shù)f(x)=sinωx+sin(ωx-
π
2
)
,x∈R.
(1)若ω=
1
2
,求f(x)的最大值及相應(yīng)的x的集合;
(2)若x=
π
8
是f(x)的一個(gè)零點(diǎn),且0<ω<10,求ω的值和f(x)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•深圳二模)已知
a
,
b
是非零向量,則
a
b
不共線是|
a
+
b
|<|
a
|+|
b
|的( 。

查看答案和解析>>

同步練習(xí)冊答案