已知直線
交拋物線
于
兩點(diǎn).若該拋物線上存在點(diǎn)
,使得
,則
的取值范圍為_________.
試題分析:由題意知
,設(shè)
,由
得
,
解得:
(舍) 或
,由
得
的取值范圍為
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,橢圓
的離心率為
,
軸被曲線
截得的線段長等于
的短軸長。
與
軸的交點(diǎn)為
,過坐標(biāo)原點(diǎn)
的直線
與
相交于點(diǎn)
,直線
分別與
相交于點(diǎn)
。
(1)求
、
的方程;
(2)求證:
。
(3)記
的面積分別為
,若
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,橢圓
與橢圓
中心在原點(diǎn),焦點(diǎn)均在
軸上,且離心率相同.橢圓
的長軸長為
,且橢圓
的左準(zhǔn)線
被橢圓
截得的線段
長為
,已知點(diǎn)
是橢圓
上的一個(gè)動點(diǎn).
⑴求橢圓
與橢圓
的方程;
⑵設(shè)點(diǎn)
為橢圓
的左頂點(diǎn),點(diǎn)
為橢圓
的下頂點(diǎn),若直線
剛好平分
,求點(diǎn)
的坐標(biāo);
⑶若點(diǎn)
在橢圓
上,點(diǎn)
滿足
,則直線
與直線
的斜率之積是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的左、右焦點(diǎn)分別為
,離心率為
,P是橢圓上一點(diǎn),且
面積的最大值等于2.
(1)求橢圓的方程;
(2)直線y=2上是否存在點(diǎn)Q,使得從該點(diǎn)向橢圓所引的兩條切線相互垂直?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知拋物線
的焦點(diǎn)為
,過點(diǎn)
的直線
交拋物線
于點(diǎn)
,
.
(Ⅰ)若
(點(diǎn)
在第一象限),求直線
的方程;
(Ⅱ)求證:
為定值(點(diǎn)
為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標(biāo)系
中,已知過點(diǎn)
的橢圓
:
的右焦點(diǎn)為
,過焦點(diǎn)
且與
軸不重合的直線與橢圓
交于
,
兩點(diǎn),點(diǎn)
關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)為
,直線
,
分別交橢圓
的右準(zhǔn)線
于
,
兩點(diǎn).
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)
的坐標(biāo)為
,試求直線
的方程;
(3)記
,
兩點(diǎn)的縱坐標(biāo)分別為
,
,試問
是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,長軸長為
,且點(diǎn)
在橢圓
上.
(1)求橢圓
的方程;
(2)設(shè)
是橢圓
長軸上的一個(gè)動點(diǎn),過
作方向向量
的直線
交橢圓
于
、
兩點(diǎn),求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知拋物線
上一點(diǎn)P到y(tǒng)軸的距離為5,則點(diǎn)P到焦點(diǎn)的距離為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
內(nèi)有一點(diǎn)
,過點(diǎn)
的弦恰好以
為中點(diǎn),那么這條弦所在直線的斜率為
,直線方程為
.
查看答案和解析>>