【題目】已知△ABC中,a,b,c是三個內(nèi)角A,B,C的對邊,關(guān)于x的不等式 的解集是空集.
(1)求角C的最大值;
(2)若 ,△ABC的面積 ,求當(dāng)角C取最大值時a+b的值.

【答案】
(1)解:∵ 的解集是空集.

,

即2cos2C+3cosC﹣2≥0,

即(cosC+2)(2cosC﹣1)≥0,

∴cosC ,

所以0<C ,

即C的最大值為


(2)解:∵ =

∴得ab=6

由余弦定理得: ,從而得 ,


【解析】(1)由題意可得 ,解得cosC ,從而解得C的最大值.(2)由題意: = ,得ab=6,由余弦定理得: ,即可得解a+b的值.
【考點精析】根據(jù)題目的已知條件,利用正弦定理的定義和余弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握正弦定理:;余弦定理:;;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3﹣3x2+1,若f(x)存在唯一的零點x0 , 且x0>0,則a的取值范圍為(
A.(﹣∞,﹣2)
B.(﹣∞,0)
C.(2,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某冷飲店為了解氣溫變化對其營業(yè)額的影響,隨機記錄了該店1月份銷售淡季中5天的日營業(yè)額y(單位:百元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如下表所示:

x

3

6

7

9

10

y

12

10

8

8

7

(Ⅰ)判定y與x之間是正相關(guān)還是負相關(guān),并求回歸方程 = x+
(Ⅱ)若該地1月份某天的最低氣溫為6℃,預(yù)測該店當(dāng)日的營業(yè)額
(參考公式: = = = ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCD是一個梯形,CDABCDBO=1,△AOD為等腰直角三角形,OAB的中點,試求梯形ABCD水平放置的直觀圖的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+b(a,b∈R),曲線f(x)在x=1處的切線方程為x﹣y﹣1=0.
(1)求a,b的值;
(2)證明:f(x)+ ≥1;
(3)已知滿足xlnx=1的常數(shù)為k.令函數(shù)g(x)=mex+f(x)(其中e是自然對數(shù)的底數(shù),e=2.71828…),若x=x0是g(x)的極值點,且g(x)≤0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:x0∈(0,+∞),3 +x0=2016,命題q:a∈(0,+∞),f(x)=|x|﹣ax,(x∈R)為偶函數(shù),那么,下列命題為真命題的是(
A.p∧q
B.(¬p)∧q
C.p∧(¬q)
D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= (x≠-2),h(x)=x2+1.
(1)求f(2),h(1)的值;
(2)求f[h(2)]的值;
(3)求f(x),h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐P﹣ABCD中,AB⊥AD,AD⊥DC,PA⊥底面ABCD,PA=AD=AB= CD=1,M為PB的中點.
(1)試在CD上確定一點N,使得MN∥平面PAD;
(2)點N在滿足(1)的條件下,求直線MN與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)b和c分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量ξ表示方程x2+bx+c=0實根的個數(shù)(重根按一個計).
(1)求方程x2+bx+c=0有實根的概率;
(2)(理)求ξ的分布列和數(shù)學(xué)期望 (文)求P(ξ=1)的值
(3)(理)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程x2+bx+c=0有實根的概率.

查看答案和解析>>

同步練習(xí)冊答案