【題目】如圖所示,射線OA、OB分別與x軸正半軸成45°30°角,過點P(1,0)作直線AB分別交OAOBA、B兩點,當(dāng)AB的中點C恰好落在直線yx上時,求直線AB的方程.

【答案】(3)x2y30.

【解析】解:由題意可得kOAtan45°1,

kOBtan(180°30°)=-,

所以射線OA的方程為yx(x≥0),

射線OB的方程為y=-x(x≥0)

設(shè)A(m,m)B(n,n),

所以AB的中點C(, ),

由點Cyx上,且A、PB三點共線得

解得m,

所以A()

P(1,0)

所以kABkAP

所以直線AB的方程為y (x1),

即直線AB的方程為(3)x2y30.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列 滿足: , 或1().對任意,都存在,使得.,其中 且兩兩不相等.

(I)若.寫出下列三個數(shù)列中所有符合題目條件的數(shù)列的序號;

①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2

(Ⅱ)記.若,證明: ;

(Ⅲ)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切. 、是橢圓的右頂點與上頂點,直線與橢圓相交于兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)四邊形面積取最大值時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式|y4||y|2x對任意實數(shù)x,y都成立,則常數(shù)a的最小值為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m,n∈R,f(x)=|xm|+|2xn|.

(1)當(dāng)mn=1時,求f(x)的最小值;

(2)若f(x)的最小值為2,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Ea﹥b﹥0)的一個焦點與短軸的兩個端點是正三角形的三個頂點,點在橢圓E.

)求橢圓E的方程;

)設(shè)不過原點O且斜率為的直線l與橢圓E交于不同的兩點A,B,線段AB的中點為M,直線OM與橢圓E交于C,D,證明:|MA|·|MB|=|MC|·|MD|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,∠ADC=90°,CDAB,ADCDAB=2,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體DABC.

(1)求證:AD⊥平面BCD;

(2)求三棱錐CABD的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列中, , 成等差數(shù)列;數(shù)列中的前項和為, .

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

同步練習(xí)冊答案