解答:
解:h′(x)=a-
+(x>0).
當(dāng)a=0時,h′(x)=-
+=
,令h′(x)>0,解得0<x<1,此時函數(shù)h(x)單調(diào)遞增;令h′(x)<0,解得
1<x,此時函數(shù)h(x)單調(diào)遞減;
當(dāng)a≠0時,h′(x)=
.
當(dāng)a≥1時,令h′(x)>0,解得1<x,此時函數(shù)h(x)單調(diào)遞增;令h′(x)<0,解得0<x<1,此時函數(shù)h(x)單調(diào)遞減;
當(dāng)
<a<1時,
0<<1,令h′(x)>0,解得1<x,或
0<x<,此時函數(shù)h(x)單調(diào)遞增;令h′(x)<0,解得
<x<1,此時函數(shù)h(x)單調(diào)遞減;
當(dāng)a=
時,
h′(x)=≥0,此時函數(shù)h(x)在x>0單調(diào)遞增;
當(dāng)
0<a<時,
>1,令h′(x)>0,解得0<x<1,或
x>,此時函數(shù)h(x)單調(diào)遞增;令h′(x)<0,解得1<x<
,此時函數(shù)h(x)單調(diào)遞減;
當(dāng)a<0時,
<0<1,令h′(x)>0,解得0<x<1,此時函數(shù)h(x)單調(diào)遞增;令h′(x)<0,解得1<x,此時函數(shù)h(x)單調(diào)遞減.
綜上可得:當(dāng)a=0時,函數(shù)h(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減;
當(dāng)a≥1時,函數(shù)h(x)在區(qū)間(1,+∞)上單調(diào)遞增,在區(qū)間(0,1)單調(diào)遞減;
當(dāng)
<a<1時,函數(shù)h(x)在區(qū)間
(0,),(1,+∞)上單調(diào)遞增,在區(qū)間
(,1)上單調(diào)遞減;
當(dāng)a=
時,函數(shù)h(x)在區(qū)間(0,+∞)上單調(diào)遞增;
當(dāng)0<a
<時,函數(shù)h(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減;
當(dāng)a<0時,函數(shù)h(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減.