若函數(shù)f(x)=-ax2+2x+1至多有一個(gè)零點(diǎn),則a的取值范圍是(  )
A、1B、[1,+∞)
C、(-∞,-1]D、以上都不對(duì)
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由“函數(shù)f(x)=-ax2+2x+1至多有一個(gè)零點(diǎn)”,則有函數(shù)圖象與x軸至多有一個(gè)交點(diǎn),即相應(yīng)方程至多有一個(gè)根,用判別式法求解即可,要注意a的討論.
解答: 解:當(dāng)a=0時(shí),f(x)=2x+1,
此時(shí)函數(shù)為一次函數(shù),有且只有一個(gè)零點(diǎn),符合題意.
當(dāng)a≠0時(shí),f(x)=-ax2+2x+1,
∵函數(shù)f(x)=-ax2+2x+1至多有一個(gè)零點(diǎn),
∴△=4+4a≤0
∴a≤-1,
綜上:a的取值范圍是{a|a=0或a≤-1}
故選:D
點(diǎn)評(píng):本題主要考查函數(shù)的零點(diǎn),即考查二次函數(shù)的圖象與x軸的交點(diǎn)的橫坐標(biāo),對(duì)應(yīng)方程的根,要注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足f(3x)=f(3x-
3
2
),x∈R,則f(x)的最小正周期
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中
 
為真命題.(填上所有正確答案的序號(hào))
①“a>0是a>1的充分不必要條件”;
②“若x2+y2=0,則x,y全為0”的否命題;
③“全等三角形是相似三角形”的逆命題;
④“圓內(nèi)接四邊形對(duì)角互補(bǔ)”的逆否命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x3-3x,則f(1)+f(-1)的值為的值為( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x
+
x+3
-1其定義域是(  )
A、(-1,3)
B、[-1,3]
C、(-3,1)
D、[-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程sinx=lg|x|實(shí)根的個(gè)數(shù)為( 。
A、6B、5C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=(
5
7
 
4
7
,b=(
4
7
 
5
7
,c=(
4
7
 
4
7
,則a,b,c的大小關(guān)系是( 。
A、a>b>c
B、c>a>b
C、b>c>a
D、a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:函數(shù)y=log2(x+
a
x
-3)在區(qū)間[2,+∞)上是增函數(shù);命題q:y=log2(ax2-4x+1)函數(shù)的值域?yàn)镽.則p是q成立的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x+y=a與圓x2+y2=9交于兩點(diǎn)A、B,且|
OA
+
OB
|=|
OA
-
OB
|,其中O為坐標(biāo)原點(diǎn),則實(shí)數(shù)a的值為( 。
A、3
B、-3
C、±3
D、±
3
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案