【題目】如圖,在四棱錐中,側面底面,底面是平行四邊形, , , , 為的中點,點在線段上.
(Ⅰ)求證: ;
(Ⅱ)試確定點的位置,使得直線與平面所成的角和直線與平面所成的角相等.
【答案】(I)詳見解析;(II).
【解析】試題分析:
(1)利用題意證得平面,然后利用線面垂直的定義得
(2)建立空間直角坐標系, ,利用題意得到關于的方程,求解方程即可求得.
試題解析:
(Ⅰ)證明:在平行四邊形中,連接,因為, , ,
由余弦定理得,得,
所以,即,又,
所以,
又, ,所以, ,
所以平面,所以.
(Ⅱ)側面底面, ,所以底面,所以直線兩兩互相垂直,以為原點,直線為坐標軸,建立如圖所示空間直角坐標系,則 ,所以, , ,
設,
則, ,
所以,
易得平面的法向量.
設平面的法向量為,
由, ,
得,令,得.
因為直線與平面所成的角和此直線與平面所成的角相等,
所以,即,所以,
即,解得,所以.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),則下列結論錯誤的是( )
A. f(x)的一個周期為-2π
B. y=f(x)的圖象關于直線x=對稱
C. f(x+π)的一個零點為x=
D. f(x)在單調遞減
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)是定義在(-1,1)上的奇函數(shù),且.
(1)求函數(shù)的解析式;
(2)證明函數(shù)f(x)在(-1,1)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方體的棱長為, , 分別是棱, 的中點,過直線, 的平面分別與棱, 交于, ,設, ,給出以下四個命題:
①四邊形為平行四邊形;
②若四邊形面積, ,則有最小值;
③若四棱錐的體積, ,則是常函數(shù);
④若多面體的體積, ,則為單調函數(shù).
其中假命題為( ).
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合,其中, , . 表示中所有不同值的個數(shù).
()設集合, ,分別求和.
()若集合,求證: .
()是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】,為空間中兩條互相垂直的直線,等腰直角三角形的直角邊所在直線與,都垂直,斜邊以直線為旋轉軸旋轉,有下列結論:
(1)當直線與成角時,與成角;
(2)當直線與成角時,與成角;
(3)直線與所成角的最小值為;
(4)直線與所成角的最小值為;
其中正確的是______(填寫所有正確結論的編號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某校甲、乙、丙三個年級的學生志愿者人數(shù)分別是240,160,160.現(xiàn)采用分層抽樣的方法從中抽取7名同學去某敬老院參加獻愛心活動。
(1)應從甲、乙、丙三個年級的學生志愿者中分別抽取多少人?
(2)設抽出的7名同學分別用A,B,C,D,E,F(xiàn),G表示,現(xiàn)從中隨機抽取2名同學承擔敬老院的衛(wèi)生工作,求事件M“抽取的2名同學來自同一年級”發(fā)生的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:,圓:,動圓與圓外切并且與圓內切,圓心軌跡為曲線.
(1)求曲線的方程;
(2)若是曲線上關于軸對稱的兩點,點,直線交曲線
于另一點,求證:直線過定點,并求該定點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com