精英家教網 > 高中數學 > 題目詳情
已知bxn+1=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n對任意x∈R恒成立,且a1=9,a2=36,則b=( 。
分析:根據 bxn+1=b[1+(x-1)]n+1,根據它的展開式形式,由題意可得 b
C
1
n
=9,b
C
2
n
=36,由此求出b的值.
解答:解:∵bxn+1=b[1+(x-1)]n+1=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n,且a1=9,a2=36,
∴b
C
1
n
=9,b
C
2
n
=36,解得 b=1,n=9,
故選A.
點評:本題主要考查二項式定理的應用,二項展開式的通項公式,求展開式中某項的系數,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源:浙江省模擬題 題型:單選題

已知bxn+1=a0+a1 (x-1 )+a2 (x-1 )2+ …+an (x-1 )n對任意x∈R恒成立,且a1=9,a2=36,則b=
[     ]
A、1
B、2
C、3
D、4

查看答案和解析>>

同步練習冊答案