【題目】已知函數(shù)fx=的定義域?yàn)榧?/span>Agx=的定義域?yàn)榧?/span>BC=xR|x<ax>a+1

1)求集合A,(CAB

2)若AC=R,求實(shí)數(shù)a的取值范圍

【答案】(1);(2)

【解析】

1)找出函數(shù)fx)的定義域確定出A,找出gx)的定義域確定出B,求出A的補(bǔ)集,找出A補(bǔ)集與B的交集即可;

2)根據(jù)AC并集為R,列出關(guān)于a的不等式組,求出不等式組的解集即可得到a的范圍.

1)要使函數(shù)fx)有意義,則,

解得:﹣2≤x1,

A{x|2≤x1},即RA{x|x<﹣2x≥1},

要使函數(shù)gx)有意義,則3x≥0,

解得:x≤3

B{x|x≤3},

∴(RAB{x|x<﹣21≤x≤3};

2)∵ACR

,

解得:﹣2≤a0,

∴實(shí)數(shù)a的取值范圍為[2,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為落實(shí)國(guó)家“精準(zhǔn)扶貧”政策,讓市民吃上放心蔬菜,某企業(yè)于2017年在其扶貧基地投入100萬(wàn)元研發(fā)資金,用于蔬菜的種植及開(kāi)發(fā),并計(jì)劃今后十年內(nèi)在此基礎(chǔ)上,每年投入的資金比上一年增長(zhǎng)

(1)寫出第年(2018年為第一年)該企業(yè)投入的資金數(shù)(萬(wàn)元)與的函數(shù)關(guān)系式,并指出函數(shù)的定義域

(2)該企業(yè)從第幾年開(kāi)始(2018年為第一年),每年投入的資金數(shù)將超過(guò)200萬(wàn)元?(參考數(shù)據(jù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某服裝商場(chǎng),當(dāng)某一季節(jié)即將來(lái)臨時(shí),季節(jié)性服裝的價(jià)格呈現(xiàn)上升趨勢(shì).設(shè)一種服裝原定價(jià)為每件70元,并且每周(7天)每件漲價(jià)6元,5周后開(kāi)始保持每件100元的價(jià)格平穩(wěn)銷售;10周后,當(dāng)季節(jié)即將過(guò)去時(shí),平均每周每件降價(jià)6元,直到16周末,該服裝不再銷售.

(1)試建立每件的銷售價(jià)格(單位:元)與周次之間的函數(shù)解析式;

(2)若此服裝每件每周進(jìn)價(jià)(單位:元)與周次之間的關(guān)系為,試問(wèn)該服裝第幾周的每件銷售利潤(rùn)最大?(每件銷售利潤(rùn)=每件銷售價(jià)格-每件進(jìn)價(jià))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)若關(guān)于的方程只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;

(2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐,底面為邊長(zhǎng)為2的菱形,平面,,,分別是,的中點(diǎn).

(1)判定是否垂直,并說(shuō)明理由;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BCAB=AD=AC=3,PA=BC=4M為線段AD上一點(diǎn),AM=2MDNPC的中點(diǎn).

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f (x)=x2aln x-1,函數(shù)F(x)=.

(1)如果函數(shù)f (x)的圖象上的每一點(diǎn)處的切線斜率都是正數(shù),求實(shí)數(shù)a的取值范圍;

(2)當(dāng)a=2時(shí),你認(rèn)為函數(shù)y的圖象與yF(x)的圖象有多少個(gè)公共點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABCD是邊長(zhǎng)為60 cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得ABCD四個(gè)點(diǎn)重合于圖中的點(diǎn)P, 正好形成一個(gè)正四棱柱形狀的包裝盒,若要包裝盒容積V(cm3)最大, EF長(zhǎng)為____ cm .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)構(gòu)通過(guò)對(duì)某企業(yè)2018年的前三個(gè)季度生產(chǎn)經(jīng)營(yíng)情況的調(diào)查,得到每月利潤(rùn)(單位:萬(wàn)元)與相應(yīng)月份數(shù)的部分?jǐn)?shù)據(jù)如表:

3

6

9

241

244

229

1)根據(jù)上表數(shù)據(jù),請(qǐng)從下列三個(gè)函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述x的變化關(guān)系,并說(shuō)明理由:,,

2)利用(1)中選擇的函數(shù):

①估計(jì)月利潤(rùn)最大的是第幾個(gè)月,并求出該月的利潤(rùn);

②預(yù)估年底12月份的利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案