【題目】已知圓,過直線上第一象限內的一動點作圓的兩條切線,切點分別為,過兩點的直線與坐標軸分別交于兩點,則面積的最小值為( )
A.B.C.D.
科目:高中數學 來源: 題型:
【題目】已知函數(,)的圖象與軸交點的橫坐標構成一個公差為的等差數列,把函數的圖象沿軸向左平移個單位,縱坐標擴大到原來的2倍得到函數的圖象,則下列關于函數的命題中正確的是( )
A.函數是奇函數B.的圖象關于直線對稱
C.在上是增函數D.當時,函數的值域是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓:的焦距為2,且過點.
(1)求橢圓的方程;
(2)設橢圓的上頂點為,右焦點為,直線與橢圓交于,兩點,問是否存在直線,使得為的垂心,若存在,求出直線的方程:若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓(),點為橢圓短軸的上端點,為橢圓上異于點的任一點,若點到點距離的最大值僅在點為短軸的另一端點時取到,則稱此橢圓為“圓橢圓”,已知.
(1)若,判斷橢圓是否為“圓橢圓”;
(2)若橢圓是“圓橢圓”,求的取值范圍;
(3)若橢圓是“圓橢圓”,且取最大值,為關于原點的對稱點,也異于點,直線、分別與軸交于、兩點,試問以線段為直徑的圓是否過定點?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求在處的切線方程;
(2)令,已知函數有兩個極值點,且,求實數的取值范圍;
(3)在(2)的條件下,若存在,使不等式對任意(取值范圍內的值)恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出曲線的極坐標方程,并求出曲線與公共弦所在直線的極坐標方程;
(2)若射線與曲線交于兩點,與曲線交于點,且,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)在“精準扶貧”行動中,決定幫助一貧困山區(qū)將水果運出銷售.現有8輛甲型車和4輛乙型車,甲型車每次最多能運6噸且每天能運4次,乙型車每次最多能運10噸且每天能運3次,甲型車每天費用320元,乙型車每天費用504元.若需要一天內把180噸水果運輸到火車站,則通過合理調配車輛運送這批水果的費用最少為______元.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com