如圖,在平面直角坐標(biāo)系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點M,N均在直線x=5上.圓弧C1的圓心是坐標(biāo)原點O,半徑為13;圓弧C2過點A(29,0).

(1)求圓弧C2的方程.
(2)曲線C上是否存在點P,滿足PA=PO?若存在,指出有幾個這樣的點;若不存在,請說明理由.

(1) (x-14)2+y2=225(5≤x≤29)    (2) 不存在,理由見解析

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點,動點P 滿足:|PA|=2|PB|.
(1)若點P的軌跡為曲線,求此曲線的方程;
(2)若點Q在直線l1: x+y+3=0上,直線l2經(jīng)過點Q且與曲線只有一個公共點M,求|QM|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C:(x-3)2+(y-4)2=4,直線l1過定點A(1,0).
(1)若l1與圓相切,求l1的方程;
(2)若l1與圓相交于P、Q兩點,線段PQ的中點為M,又l1與l2:x+2y+2=0的交點為N,判斷AM·AN是否為定值?若是,則求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓:,過定點作斜率為1的直線交圓、兩點,為線段的中點.
(1)求的值;
(2)設(shè)為圓上異于、的一點,求△面積的最大值;
(3)從圓外一點向圓引一條切線,切點為,且有 , 求的最小值,并求取最小值時點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線y=x2-2x-3與坐標(biāo)軸的交點都在圓C上.
(1)求圓C的方程;
(2)若直線x+y+a=0與圓C交于A,B兩點,且AB=2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,點A(0,3),直線ly=2x-4.設(shè)圓C的半徑為1,圓心在l上.
 
(1)若圓心C也在直線yx-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C1x2y2-2y=0,圓C2x2+(y+1)2=4的圓心分別為C1,C2P為一個動點,且直線PC1,PC2的斜率之積為-.
(1)求動點P的軌跡M的方程;
(2)是否存在過點A(2,0)的直線l與軌跡M交于不同的兩點CD,使得|C1C|=|C1D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)求圓心在軸上,且與直線相切于點的圓的方程;
(2)已知圓過點,且與圓關(guān)于直線對稱,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為的圓位于軸的右側(cè),且與軸相切,
(Ⅰ)求圓的方程;
(Ⅱ)若橢圓的離心率為,且左右焦點為,試探究在圓上是否存在點,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo))

查看答案和解析>>

同步練習(xí)冊答案