某電腦公司計(jì)劃在2006年5月1日將500臺(tái)電腦投放市場,經(jīng)市場調(diào)研發(fā)現(xiàn),該批電腦每隔10天平均日銷售量減少2臺(tái),現(xiàn)準(zhǔn)備用38天銷售完該批電腦,則預(yù)計(jì)該公司5月1日至5月10日的平均日銷售量是________________臺(tái).

16

解:設(shè)前10日日均銷售x臺(tái),則10x+10(x-2)+10(x-4)+8(x-6)=500,解得x=16.∴5月1日至10日日均銷售量是16臺(tái).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某園林公司計(jì)劃在一塊以O(shè)為圓心,R(R為常數(shù),單位為米)為半徑的半圓形(如圖)地上種植花草樹木,其中弓形CMDC區(qū)域用于觀賞樣板地,△OCD區(qū)域用于種植花木出售,其余區(qū)域用于種植草皮出售.已知觀賞樣板地的成本是每平方米2元,花木的利潤是每平方米8元,草皮的利潤是每平方米3元.
(1)設(shè)∠COD=θ(單位:弧度),用θ表示弓形CMDC的面積S=f(θ);
(2)園林公司應(yīng)該怎樣規(guī)劃這塊土地,才能使總利潤最大?并求相對(duì)應(yīng)的θ.
(參考公式:扇形面積公式S=
1
2
R2θ=
1
2
Rl
,l表示扇形的弧長)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,ABCD是正方形空地,邊長為30m,電源在點(diǎn)P處,點(diǎn)P到邊AD,AB距離分別為9m,3m.某廣告公司計(jì)劃在此空地上豎一塊長方形液晶廣告屏幕MNEF,MN:NE=16:9.線段MN必須過點(diǎn)P,端點(diǎn)M,N分別在邊AD,AB上,設(shè)AN=x(m),液晶廣告屏幕MNEF的面積為S(m2).
(1)用x的代數(shù)式表示AM;
(2)求S關(guān)于x的函數(shù)關(guān)系式及該函數(shù)的定義域;
(3)當(dāng)x取何值時(shí),液晶廣告屏幕MNEF的面積S最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是正方形空地,邊長為30m,電源在點(diǎn)P處,點(diǎn)P到邊AD,AB距離分別為9m,3m.某廣告公司計(jì)劃在此空地上豎一塊長方形液晶廣告屏幕MNEF,MN:NE=16:9.線段MN必須過點(diǎn)P,端點(diǎn)M,N分別在邊AD,AB上,設(shè)AN=x(m),液晶廣告屏幕MNEF的面積為S(m2).
(1)求S關(guān)于x的函數(shù)關(guān)系式及該函數(shù)的定義域;
(2)當(dāng)x取何值時(shí),液晶廣告屏幕MNEF的面積S最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:A、B兩城相距100km,某天燃?xì)夤居?jì)劃在兩地之間建一天燃?xì)庹綝 給A、B兩城供氣.已知D地距A城x km,為保證城市安全,天燃?xì)庹揪鄡沙鞘械木嚯x均不得少于10km.已知建設(shè)費(fèi)用y (萬元)與A、B兩地的供氣距離(km)的平方和成正比,當(dāng)天燃?xì)庹綝距A城的距離為40km時(shí),建設(shè)費(fèi)用為1300萬元.(供氣距離指天燃?xì)庹揪嗟匠鞘械木嚯x)
(1)把建設(shè)費(fèi)用y(萬元)表示成供氣距離x (km)的函數(shù),并求定義域;
(2)天燃?xì)夤庹窘ㄔ诰郃城多遠(yuǎn),才能使建設(shè)供氣費(fèi)用最。钚≠M(fèi)用是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案