已知a>1,在約束條件
y≥x
y≤ax
x+y≤1
下,目標函數(shù)z=x+ay的最大值小于2,則a的取值范圍是( 。
A、(1,3)
B、(3,+∞)
C、(
2
+1,+∞)
D、(1,
2
+1)
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:先畫出滿足條件的平面區(qū)域,得到目標函數(shù)Z=X+ay對應的直線與直線y=ax垂直,且在(
1
a+1
,
a
a+1
)點取得最大值,從而
1+a2
a+1
<2,解出即可.
解答: 解:畫出滿足條件的平面區(qū)域,
如圖示:

∵a>1
故直線y=ax與直線x+y=1交于(
1
a+1
,
a
a+1
)點,
目標函數(shù)Z=X+ay對應的直線與直線y=ax垂直,
且在(
1
a+1
,
a
a+1
)點取得最大值,
1+a2
a+1
<2,
解得a∈(1,1+
2
),
故選:D.
點評:本題考查了簡單的線性規(guī)劃問題,考查了數(shù)形結合思想,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z滿足(z-2)(1-i)=1+i,則復數(shù)z的模等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“?x∈R,cosx≤
1
2
”的否定是( 。
A、?x∈R,cosx≥
1
2
B、?x∈R,cosx>
1
2
C、?∈R,cosx≥
1
2
D、?x∈R,cosx>
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=g(x)與f(x)=loga(x+1)(0<a<1)的圖象關于原點對稱
(Ⅰ)求y=g(x)的解析式;
(Ⅱ)函數(shù)F(x)=f(x)+g(x),解不等式F(t2-2t)+F(2t2-1)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:x2≤x,q:x2-(2a+1)x+a(a+1)≥0.若q是p的必要不充分條件,求實數(shù)a是取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=mx2+3(m-4)x-9,m為常數(shù)
(1)判斷函數(shù)f(x)是否存在零點,若存在指出存在幾個;
(2)若函數(shù)f(x)存在兩個零點x1,x2,試確定實數(shù)m的值,使兩個零點間的距離最小,并求出這個最小距離;
(3)設m>0,當x∈[-3,-
3
2
]時,f(x)的值域為{y|0≤y≤27},求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α,β,γ是某三角形的三個內角,給出下列四組數(shù)據(jù):
①sinα,sinβ,sinγ;②sin2α,sin2β,sin2γ;
③cos2
α
2
,cos2
β
2
,cos2
γ
2
;④tan
α
2
,tan
β
2
,tan
γ
2
;
分別以每組數(shù)據(jù)作為三條線段的長,其中一定能構成三角形的數(shù)組的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四棱錐P-ABCD中,PD⊥面ABCD,底面ABCD為菱形,且PD=DC=2,∠ABC=60°,
(1)求證:AC⊥面 PDB;
(2)求直線PD與平面PAC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于直線ax+y-a=0(a≠0),以下說法正確的是( 。
A、恒過定點,且斜率和縱截距相等
B、恒過定點,且橫截距恒為定值
C、恒過定點,且與y軸平行的直線
D、恒過定點,且與x軸平行的直線

查看答案和解析>>

同步練習冊答案