球面上有三個點A、B、C,其中AB=18,BC=24,AC=30,且球心到平面ABC的距離為球半徑的一半,那么這個球的半徑為( 。
A、20
B、30
C、10
3
D、15
3
考點:球的體積和表面積
專題:空間位置關系與距離
分析:求出三角形ABC的外心,利用球心到△ABC所在平面的距離為球半徑的一半,求出球的半徑.
解答: 解:由題意AB=18,BC=24,AC=30,∵182+242=302,可知三角形是直角三角形,
三角形的外心是AC的中點,球心到截面的距離就是球心與三角形外心的距離,
設球的半徑為R,球心到△ABC所在平面的距離為球半徑的一半,
所以R2=(
1
2
R)2+152,
解得R2=300,
∴R=10
3

故選:C.
點評:本題是中檔題,考查球的內(nèi)接多面體,找出球的半徑滿足的條件是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=a1-x(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny=0(m>-1,n>0)上,則
1
m+1
+
1
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四個邊長為1的小正方形排成一個大正方形,AB是大正方形的一條邊,Pi(i=1,2,…,7)是小正方形的其余頂點,則
AB
APi
(i=1,2,…,7)的不同值的個數(shù)為(  )
A、7B、5C、3D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個命題中真命題的個數(shù)是( 。
①若y=f(x)是奇函數(shù),則y=|f(x)|的圖象關于y軸對稱;
②若logm3<logn3<0,則0<m<n<1;
③若函數(shù)f(x)對任意x∈R滿足f(x)•f(x+4)=1,則8是函數(shù)f(x)的一個周期;
④命題“在斜△ABC中,A>B是|tanA|>|tanB|成立的充要條件;
⑤命題“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PQ是半徑為1的圓A的直徑,△ABC是邊長為1的正三角形,則
BP
CQ
的最大值為(  )
A、
1
2
B、
1
4
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線x2=4y的焦點到雙曲線y2-
x2
4
=1的漸近線的距離等于( 。
A、
5
B、
5
5
C、
2
5
5
D、
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若3a,b,c成等比數(shù)列,則函數(shù)f(x)=ax3+bx2+cx+d的零點個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是某空間幾何體的直觀圖,則該幾何體的側(cè)視圖是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從集合A={1,2,3,4,5}中任取三個元素構成三元有序數(shù)組(a1,a2,a3),規(guī)定a1<a2<a3
(Ⅰ)從所有三元有序數(shù)組中任選一個,求它的所有元素之和等于10的概率;
(Ⅱ)定義三元有序數(shù)組(a1,a2,a3)的“項標距離”為d=|a1-1|+|a2-2|+|a3-3|,從所有三元有序數(shù)組中任選一個,求它的“項標距離”d為偶數(shù)的概率.

查看答案和解析>>

同步練習冊答案