已知f(x)=ax2+bx+c的圖象過原點(diǎn)(-1,0),是否存在常數(shù)a、b、c,使不等式x≤f(x) ≤對(duì)一切實(shí)數(shù)x均成立?

存在一組常數(shù)a=,,b=,c=

解析試題分析:∵f(x)的圖象過點(diǎn)(-1,0),∴a-b+c=0①
∵x≤f(x)≤對(duì)一切x∈R均成立,
∴當(dāng)x=1時(shí)也成立,即1≤a+b+c≤1.
故有a+b+c=1.②
由①②得b=,c=-a.
∴f(x)=ax2+x+-a≤對(duì)一切x∈R成立,
也即恒成立?
解得a=.∴c=-a=.∴存在一組常數(shù)a=,,b=,c=使不等式x≤f(x) ≤對(duì)一切實(shí)數(shù)x均成立
考點(diǎn):本題主要考查函數(shù)恒成立問題;不等式的證明方法、二次函數(shù)的圖象和性質(zhì)。
點(diǎn)評(píng):解答中賦值法(特殊值法)可以使“探索性”問題變得比較明朗,它是解決這類問題比較常用的方法。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分) 已知函數(shù)f(x)=-1+2sinxcosx+2cos2x.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)求f(x)圖象上與原點(diǎn)最近的對(duì)稱中心的坐標(biāo);
(3)若角α,β的終邊不共線,且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分)設(shè).
(1)若恒成立,求實(shí)數(shù)的取值范圍;
(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知方程為實(shí)數(shù))有兩個(gè)不相等的實(shí)數(shù)根,分別求:
(Ⅰ)若方程的根為一正一負(fù),則求實(shí)數(shù)的取值范圍;
(Ⅱ)若方程的兩根都在內(nèi),則求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分) 如圖,有一塊矩形空地,要在這塊空地上辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=>2),BC=2,且AE=AH=CF=CG,設(shè)AE=,綠地面積為.

(1)寫出關(guān)于的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域;
(2)當(dāng)AE為何值時(shí),綠地面積最大?  (10分) 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)的一個(gè)極值點(diǎn).
(1)求的單調(diào)遞增區(qū)間;
(2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)P:二次函數(shù)在區(qū)間上存在零點(diǎn);Q:函數(shù)內(nèi)沒有極值點(diǎn).若“P或Q”為真命題,“P且Q”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù),
(1)  若存在實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍;
(2)  設(shè),且在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),若上的最大值為,求的解析式.

查看答案和解析>>

同步練習(xí)冊答案