已知函數(shù)f(x)=2|x|-sin(
2
+x),對于任意的x1,x2∈[-π,π],有如下條件:
①x12>x22;   ②x1>x2;  ③|x1|>x2;   ④x1>|x2|.
其中能使f(x1)>f(x2)恒成立的條件序號是
 
考點(diǎn):函數(shù)恒成立問題
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:化簡f(x)后可判斷f(x)的奇偶性、單調(diào)性,借助偶函數(shù)的性質(zhì)可判斷①④的正確性;舉反例可說明②③的錯誤.
解答: 解:f(x)=2|x|-sin(
2
+x)=2|x|-cosx,
∵f(-x)=2|-x|-cos(-x)=2|x|-cosx=f(x),
∴函數(shù)f(x)=2|x|-cosx為偶函數(shù),
∴f(-x)=f(|x|);
又x∈[0,π]時,2|x|=2x遞增,-cosx遞增,
∴f(x)=2|x|-cosx在[0,π]上單調(diào)遞增,且在[-π,0]上單調(diào)遞減.
①中,x12>x22,即|x1|>|x2|,
結(jié)合偶函數(shù)的性質(zhì)得f(|x1|)>f(|x2|),
∴f(x1)>f(x2);
④中,x1>|x2|,即|x1|>|x2|,
于是也有f(x1)>f(x2);
②③中,取x1=0,x2=-1,可知 f(x1)<f(x2);
故答案為:①④.
點(diǎn)評:本題考查函數(shù)f(x)的奇偶性與單調(diào)性,得到f(x)為偶函數(shù),在[0,π]上單調(diào)遞增是關(guān)鍵,考查分析轉(zhuǎn)化能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx在x=2處取得極值4,且其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過坐標(biāo)原點(diǎn).
(1)求函數(shù)y=f(x)的解析式;
(2)若x∈[-3,3],求y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義“等積數(shù)列”:在一個數(shù)列中,如果每一項與它的后一項的積都為同一個常數(shù),那么這個數(shù)列叫做等積數(shù)列,這個常數(shù)叫做該數(shù)列的公積,已知數(shù)列{an}是等積數(shù)列,且a1=3,公積為15,那么a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
AM
=
1
4
AB
+
3
4
AC
,則△ABM與△ABC的面積之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論中正確命題的個數(shù)是
 

①命題p:“?x∈R,x2-2≥0”的否定形式是?p:?x∈R,x2-2<0;
②若?p是q的必要條件,則p是?q的充分條件;
③“M>N”是“(
3
4
)M>(
3
4
)N
”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是
 

①y=sinx+
4
sinx
(0<x≤
π
2
)的最小值為4
②y=
x2+5
x2+4
的最小值為2
③y=ex+e-x的最小值為2
④x>0,y>0,且x+y=20,則m=lgx+lgy的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(an,2),
b
=(an+1,
2
5
),且a1=1,若數(shù)列{an}的前n項和為Sn,且
a
b
,則Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的奇函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),當(dāng)x≠0時,f′(x)+
f(x)
x
>0,若a=
1
2
f(
1
2
)
,b=-2f(-2),c=ln
1
2
f(ln2),則a,b,c的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點(diǎn)(2,-1),且與直線x+y-5=0平行的直線方程是
 

查看答案和解析>>

同步練習(xí)冊答案