已知:函數(shù)
(I)求f(x)的單調(diào)區(qū)間;
(II)若f(x)>0恒成立,求a的取值范圍.
【答案】分析:(I)先求出函數(shù)的定義域,進(jìn)而根據(jù)函數(shù)的解析式,求出函數(shù)的導(dǎo)函數(shù),分析導(dǎo)函數(shù)符號在不同區(qū)間上的取值,根據(jù)導(dǎo)函數(shù)符號與原函數(shù)的單調(diào)性之間的關(guān)系可得結(jié)論;
(II)若f(x)>0恒成立,則f(x)的最小值大于0,根據(jù)(I)中結(jié)論,求出函數(shù)的最小值,代入構(gòu)造關(guān)于a的不等式,解不等式可得a的取值范圍
解答:解:(I)∵函數(shù)的定義域?yàn)椋?,+∞)
==
∵a>0,令f′(x)=0,則x=-a(舍去),或x=2a
∵當(dāng)x∈(0,2a)時(shí),f′(x)<0,∵當(dāng)x∈(2a,+∞)時(shí),f′(x)>0,
∴(0,2a)為函數(shù)的單調(diào)遞減區(qū)間,
(2a,+∞)為函數(shù)的單調(diào)遞增區(qū)間;
(II)由(I)得當(dāng)x=2a時(shí),函數(shù)取最小值4a2-2a2ln(2a)
若f(x)>0恒成立
則4a2-2a2ln(2a)=2a2•[2-ln(2a)]>0
即2-ln(2a)>0
解得a<
又∵a>0,
∴a的取值范圍為(0,
點(diǎn)評:本題考查的知識點(diǎn)是利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和最值,其中熟練掌握導(dǎo)函數(shù)符號與原函數(shù)的單調(diào)性之間的關(guān)系,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)學(xué)公式,函數(shù)數(shù)學(xué)公式
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[0,π]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年山東省濟(jì)寧一中高三一輪復(fù)習(xí)質(zhì)量驗(yàn)收數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知,函數(shù)
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[0,π]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年陜西省咸陽市高考模擬考試數(shù)學(xué)試卷((理科)(解析版) 題型:解答題

已知,函數(shù)
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[0,π]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年陜西省咸陽市高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

已知,函數(shù)
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[0,π]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊答案