ABx軸上的兩點,點P的橫坐標為2,且|PA|=|PB|,若直線PA的方程為xy+1=0,則直線PB的方程是 (    )

A.2yx-4=0             B.2xy-1=0

C.xy-5=0             D.2xy-7=0

答案:C
提示:

xy+1=0得A(-1,0)。又|PA|=|PB|知點PAB中垂線上的點,故B(5,0),且所求直線的傾斜角與已知直線傾斜角互補,則斜率互為相反數(shù),故所求直線的斜率為-1,所以選C。


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點在原點,焦點F在x軸正半軸上,設A、B是拋物線C上的兩個動點(AB不垂直于x軸),且|AF|+|BF|=8,線段AB的中垂線恒過定點Q(6,0),求此拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線C:
x2
2
-y2=1
的左、右頂點分別為A1、A2,垂直于x軸的直線a與雙曲線C交于不同的兩點S、T.
(1)求直線A1S與直線A2T的交點H的軌跡E的方程;
(2)設A,B是曲線E上的兩個動點,線段AB的中垂線與曲線E交于P,Q兩點,直線l:x=
1
2
,線段AB的中點M在直線l上,若F(1,0),求
FP
FQ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點在原點,焦點Fx軸正半軸上,設AB是拋物線C上的兩個動點(AB不垂直于x軸),且|AF|+|BF|=8,線段AB的垂直平分線恒過定點Q(6,0),求此拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點在原點,焦點Fx軸正半軸上,設A、B是拋物線C上的兩個動點(AB不垂直于x軸),且|AF|+|BF|=8,線段AB的垂直平分線恒過定點Q(6,0),求此拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點在原點,焦點F在x軸正半軸上,設A,B是拋物線C上的兩個動點(AB不垂直于x軸),且|AF|+|BF|=8,線段AB的垂直平分線恒經過定點Q(6,0),求此拋物線方程.

查看答案和解析>>

同步練習冊答案