精英家教網 > 高中數學 > 題目詳情
如果甲、乙兩個乒乓球選手進行比賽,而且他們的水平相當,規(guī)定“7局四勝”,即先贏四局者勝,若已知甲先贏了前兩局.
求:(Ⅰ)乙取勝的概率;
(Ⅱ)比賽打滿七局的概率;
(Ⅲ)設比賽局數為ξ,求ξ的分布列及Eξ.
(Ⅰ)當甲先贏了前兩局時,乙取勝的情況有兩種:
第一種是乙連勝四局;第二種是在第3局到第6局,乙贏了3局,第7局乙贏.
在第一種情況下,乙取勝的概率為(
1
2
)4=
1
16

在第二種情況下,乙取勝的概率為
C34
(
1
2
)4?
1
2
=
1
8

所以當甲先贏了前兩局時,乙取勝的概率為
1
16
+
1
8
=
3
16


(Ⅱ)比賽打滿七局有兩種結果:甲勝或乙勝,記“比賽打滿七局甲勝”為事件A;
記“比賽打滿七局乙勝”為事件B.則P(A)=
C14
(
1
2
)4(
1
2
)=
1
8

P(B)=
C34
(
1
2
)4(
1
2
)=
1
8

又A,B互斥,所以比賽打滿七局的概率為P(A)+P(B)=
1
4

(或第3~6局中甲甲勝1局乙勝3局,P=
C14
(
1
2
)3(
1
2
)=
1
4


(Ⅲ)P(ξ=4)=(
1
2
)2=
1
4

P(ξ=5)=
C12
(
1
2
)2(
1
2
)=
1
4

P(ξ=6)=
C13
(
1
2
)3(
1
2
)+(
1
2
)4=
1
4

P(ξ=7)=
C14
(
1
2
)4(
1
2
)+
C34
(
1
2
)4(
1
2
)=
1
4

所以ξ的分布列為:

精英家教網

Eξ=(4+5+6+67)×
1
4
=5.5.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如果甲、乙兩個乒乓球選手進行比賽,而且他們的水平相當,規(guī)定“7局四勝”,即先贏四局者勝,若已知甲先贏了前兩局.
求:(Ⅰ)乙取勝的概率;
(Ⅱ)比賽打滿七局的概率;
(Ⅲ)設比賽局數為ξ,求ξ的分布列及Eξ.

查看答案和解析>>

科目:高中數學 來源: 題型:

如果甲、乙兩個乒乓球選手進行比賽,而且他們的水平相當,規(guī)定“7局四勝”,即先贏四局者勝,若已知甲先贏了前兩局,求:

   (Ⅰ)乙取勝的概率;

   (Ⅱ)比賽打滿七局的概率;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如果甲、乙兩個乒乓球選手進行比賽,而且他們的水平相當,規(guī)定“7局四勝”,即先贏四局者勝,若已知甲先贏了前兩局.
求:(Ⅰ)乙取勝的概率;
(Ⅱ)比賽打滿七局的概率;
(Ⅲ)設比賽局數為ξ,求ξ的分布列及Eξ.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年山東省魯齊中學高三(上)學分認定考試數學試卷(理科)(解析版) 題型:解答題

如果甲、乙兩個乒乓球選手進行比賽,而且他們的水平相當,規(guī)定“7局四勝”,即先贏四局者勝,若已知甲先贏了前兩局.
求:(Ⅰ)乙取勝的概率;
(Ⅱ)比賽打滿七局的概率;
(Ⅲ)設比賽局數為ξ,求ξ的分布列及Eξ.

查看答案和解析>>

同步練習冊答案