【題目】下列有關(guān)命題的說(shuō)法正確的是___(請(qǐng)?zhí)顚?xiě)所有正確的命題序號(hào)).

①命題“若,則”的否命題為:“若,則”;

②命題“若,則”的逆否命題為真命題;

③條件,條件,則的充分不必要條件;

④已知時(shí),,若是銳角三角形,則.

【答案】②④

【解析】

根據(jù)否命題與原命題的關(guān)系可判斷命題①的真假;判斷出原命題的真假可判斷出其逆否命題的真假,從而判斷出命題②的真假;解出不等式以及,根據(jù)集合的包含關(guān)系得出命題③的真假;根據(jù)得出函數(shù)上的單調(diào)性,由是銳角三角形,得出,結(jié)合函數(shù)的單調(diào)性判斷命題④的真假.

對(duì)于①,命題“若,則”的否命題是:“若,則”,故錯(cuò)誤;

對(duì)于②,命題“若,則”是真命題,則它的逆否命題也是真命題,故正確;

對(duì)于③,條件 ,即為;條件,即為;則的充分不必要條件,故錯(cuò)誤;

對(duì)于④,時(shí),,當(dāng)時(shí),

上是增函數(shù);當(dāng)是銳角三角形,,即,

所以,則,故正確.

故答案為②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正項(xiàng)數(shù)列的前項(xiàng)和為,且.

)試求數(shù)列的通項(xiàng)公式;

)設(shè),求的前項(xiàng)和為.

)在()的條件下,若對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)=,其中a>0,a≠1

(1)判斷的奇偶性,并證明你的結(jié)論;

(2)若關(guān)于的不等式||[﹣1,1]上恒成立,求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列的公差不為0是其前項(xiàng)和,給出下列命題:

①若,且,則都是中的最大項(xiàng);

②給定,對(duì)一切,都有

③若,則中一定有最小項(xiàng);

④存在,使得同號(hào).

其中正確命題的個(gè)數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地草場(chǎng)出現(xiàn)火災(zāi),火勢(shì)正以每分鐘的速度順風(fēng)蔓延,消防站接到警報(bào)立即派消防隊(duì)員前去,在火災(zāi)發(fā)生后分鐘到達(dá)救火現(xiàn)場(chǎng),已知消防隊(duì)員在現(xiàn)場(chǎng)平均每人每分鐘滅火,所消耗的滅火材料、勞務(wù)津貼等費(fèi)用為每人每分鐘元,另附加每次救火所耗損的車(chē)輛、器械和裝備等費(fèi)用平均每人100元,而燒毀一平方米森林損失費(fèi)為30元.

1)設(shè)派名消防隊(duì)員前去救火,用分鐘將火撲滅,試建立的函數(shù)關(guān)系式;

2)問(wèn)應(yīng)該派多少消防隊(duì)員前去救火,才能使總損失最少?(注:總損失費(fèi)=滅火勞務(wù)津貼+車(chē)輛、器械裝備費(fèi)+森林損失費(fèi))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為奇函數(shù).

1)求的值;

2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

3)當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知底角為的等腰梯形,底邊長(zhǎng)為7,腰長(zhǎng)為,當(dāng)一條垂直于底邊垂足為的直線從左至右向移動(dòng)(與梯形有公共點(diǎn))時(shí),直線把梯形分成兩部分,令,記左邊部分的面積為

1)試求1,3時(shí)的值;

2)寫(xiě)出關(guān)于的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組函數(shù)中表示同一個(gè)函數(shù)的是()

A.fx)=x1,gx)= 1

B.fx)=x2,gx)=( 4

C.fx)=gx)=|x|

D.fx)=,gx)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

分別求出適合下列條件的直線方程:

(1)經(jīng)過(guò)點(diǎn)且在軸上的截距等于在軸上截距的2倍;

(2)經(jīng)過(guò)直線的交點(diǎn),且和等距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案