(本小題12分)某旅游景點(diǎn)預(yù)計(jì)2013年1月份起前個(gè)月的旅游人數(shù)的和(單位:萬人)與的關(guān)系近似滿足已知第月的人均消費(fèi)額(單位:元)與的近似關(guān)系是
(1)寫出2013年第x月的旅游人數(shù)(單位:萬人)與x的函數(shù)關(guān)系式;
(2)試問2013年哪個(gè)月的旅游消費(fèi)總額最大,最大旅游消費(fèi)額為多少萬元?
(1)
(2) 2013年第5月份的旅游消費(fèi)總額最大,最大消費(fèi)總額為3125萬元。
解析試題分析:解:(1)當(dāng)時(shí),,當(dāng),且時(shí),
而當(dāng)也符合所以
(2) 第x月旅游消費(fèi)總額為:
即
當(dāng)
令得
當(dāng)時(shí), 當(dāng)時(shí)
所以(萬元)
當(dāng)時(shí),是減函數(shù)。
當(dāng)時(shí),(萬元)。
綜上,2013年第5月份的旅游消費(fèi)總額最大,最大消費(fèi)總額為3125萬元。
考點(diǎn):函數(shù)的最值
點(diǎn)評:考查了將實(shí)際問題轉(zhuǎn)化為代數(shù)式,然后結(jié)合導(dǎo)數(shù)的工具性,判定單調(diào)性,進(jìn)而得求解,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
欲修建一橫斷面為等腰梯形(如圖1)的水渠,為降低成本必須盡量減少水與渠壁的接觸面,若水渠橫斷面面積設(shè)計(jì)為定值S,渠深h,則水渠壁的傾角α(0°<α<90°)應(yīng)為多大時(shí),方能使修建成本最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣出210件;如果每件商品在該售價(jià)的基礎(chǔ)上每上漲1元,則每個(gè)月少賣10件(每件售價(jià)不能高于65元).設(shè)每件商品的售價(jià)上漲元(為正整數(shù)),每個(gè)月的銷售利潤為元.(14分)
(1)求與的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤?最大的月利潤是多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)減函數(shù)(Ⅰ)求函數(shù);(Ⅱ)討論的奇偶性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù),
(1)若時(shí),在其定義域內(nèi)單調(diào)遞增,求的取值范圍;
(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于,兩點(diǎn),過線段的中點(diǎn)作軸的垂線分別交、于點(diǎn),,問是否存在點(diǎn),使在處的切線與在處的切線平行?若存在,求的橫坐標(biāo),若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
(Ⅰ)已知函數(shù)在上具有單調(diào)性,求實(shí)數(shù)的取值范圍;
(Ⅱ)已知向量、、兩兩所成的角相等,且,,,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)某工廠有214名工人, 現(xiàn)要生產(chǎn)1500件產(chǎn)品, 每件產(chǎn)品由3個(gè)A型零件與1個(gè)B型零件配套組成, 每個(gè)工人加工5個(gè)A型零件與3個(gè)B型零件所需時(shí)間相同. 現(xiàn)將全部工人分為兩組, 分別加工一種零件, 同時(shí)開始加工. 設(shè)加工A型零件的工人有x人, 在單位時(shí)間內(nèi)每人加工A型零件5k個(gè)(k∈N*), 加工完A型零件所需時(shí)間為g(x), 加工完B型零件所需時(shí)間為h (x).
(Ⅰ) 試比較與大小, 并寫出完成總?cè)蝿?wù)的時(shí)間的表達(dá)式;
(Ⅱ) 怎樣分組才能使完成任務(wù)所需時(shí)間最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
已知,,且直線與曲線相切.
(1)若對內(nèi)的一切實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求最大的正整數(shù),使得對(是自然對數(shù)的底數(shù))內(nèi)的任意個(gè)實(shí)數(shù)都有成立;
(3)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com