【題目】已知函數(shù),函數(shù).
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當(dāng)時,證明:對一切的,都有恒成立;
(Ⅲ)當(dāng)時,函數(shù),有最小值,記的最小值為,證明:.
【答案】(Ⅰ)極大值是,無極小值(Ⅱ)詳見解析(Ⅲ)詳見解析
【解析】
(Ⅰ)求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(Ⅱ)問題可轉(zhuǎn)化為證明,令,,通過求導(dǎo)判斷單調(diào)性可得到的最小值,的最大值是,即可證明不等式成立;
(Ⅲ)求出函數(shù)的導(dǎo)數(shù),結(jié)合的范圍,可判斷函數(shù)的單調(diào)性及最小值,從而可得到的表達(dá)式,然后通過構(gòu)造函數(shù)判斷的單調(diào)性,即可證明結(jié)論。
解:(Ⅰ),令,則,
令,解得:,
令,解得:,
故在處取得極大值,極大值是,無極小值;
(Ⅱ)要證,即證,
即證:,
令,,則,
令,則,令,則,
故在遞減,在遞增,
故在處取得極小值也是最小值,
令,,
故在遞增,在遞減,
故在處取得極大值也是最大值,
故對一切的,恒成立,即;
(Ⅲ),設(shè),則,
由,得,而得,
故在遞增,又,,
故存在唯一,使得,即,即,
當(dāng),,當(dāng),,
故在遞減,在遞增,
故在處取極小值也是最小值,
而,由,故,即,
故在遞減,
故,即,
從而,
即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓 的左焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為.
(1)已知橢圓的離心率為,線段中點(diǎn)的橫坐標(biāo)為,求橢圓的標(biāo)準(zhǔn)方程;
(2)已知△外接圓的圓心在直線上,求橢圓的離心率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考方案的實(shí)施,學(xué)生對物理學(xué)科的選擇成了焦點(diǎn)話題. 某學(xué)校為了了解該校學(xué)生的物理成績,從,兩個班分別隨機(jī)調(diào)查了40名學(xué)生,根據(jù)學(xué)生的某次物理成績,得到班學(xué)生物理成績的頻率分布直方圖和班學(xué)生物理成績的頻數(shù)分布條形圖.
(Ⅰ)估計(jì)班學(xué)生物理成績的眾數(shù)、中位數(shù)(精確到)、平均數(shù)(各組區(qū)間內(nèi)的數(shù)據(jù)以該組區(qū)間的中點(diǎn)值為代表);
(Ⅱ)填寫列聯(lián)表,并判斷是否有的把握認(rèn)為物理成績與班級有關(guān)?
物理成績的學(xué)生數(shù) | 物理成績的學(xué)生數(shù) | 合計(jì) | |
班 | |||
班 | |||
合計(jì) |
附:列聯(lián)表隨機(jī)變量;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,為了滿足廣大人民的消費(fèi)需求,某共享單車公司欲投放一批共享單車,單車總數(shù)不超過100輛,現(xiàn)有A,B兩種型號的單車:其中A型車為運(yùn)動型,成本為400元輛,騎行半小時需花費(fèi)元;B型車為輕便型,成本為2400元輛,騎行半小時需花費(fèi)1元若公司投入成本資金不能超過8萬元,且投入的車輛平均每車每天會被騎行2次,每次不超過半小時不足半小時按半小時計(jì)算,問公司如何投放兩種型號的單車才能使每天獲得的總收入最多,最多為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)圓心在軸上的圓與橢圓在軸的上方有兩個交點(diǎn),且圓在這兩個交點(diǎn)處的兩條切線相互垂直并分別過不同的焦點(diǎn),求圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求在點(diǎn)處的切線方程;
(2)若對于任意的,恒有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.
(1)將曲線的參數(shù)方程化為普通方程,將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程.
(2)曲線,是否相交?若相交,請求出公共弦長;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年11月6日-11日,第十二屆中國國際航空航天博覽會在珠海舉行。在航展期間,從珠海市區(qū)開車前往航展地有甲、乙兩條路線可走,已知每輛車走路線甲堵車的概率為,走路線乙堵車的概率為p,若現(xiàn)在有A,B兩輛汽車走路線甲,有一輛汽車C走路線乙,且這三輛車是否堵車相互之間沒有影響。
(1)若這三輛汽車中恰有一輛汽車被堵的概率為,求p的值。
(2)在(1)的條件下,求這三輛汽車中被堵車輛的輛數(shù)X的分布列和數(shù)學(xué)期望。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com