【題目】已知橢圓的離心率為,焦距為.斜率為k的直線l與橢圓M有兩個不同的交點A,B.

)求橢圓M的方程;

)若,求 的最大值;

)設,直線PA與橢圓M的另一個交點為C,直線PB與橢圓M的另一個交點為D.C,D和點 共線,求k.

【答案】

【解析】分析:(1)根據(jù)題干可得的方程組,求解的值,代入可得橢圓方程;(2)設直線方程為,聯(lián)立,消整理得,利用根與系數(shù)關系及弦長公式表示出,求其最值;(3)聯(lián)立直線與橢圓方程,根據(jù)韋達定理寫出兩根關系,結合三點共線,利用共線向量基本定理得出等量關系,可求斜率.

詳解:

(Ⅰ)由題意得,所以,

,所以,所以,

所以橢圓的標準方程為

(Ⅱ)設直線的方程為,

消去可得,

,即,

,則 ,

,

易得當時, ,故的最大值為

(Ⅲ)設 , , ,

, ,

,所以可設,直線的方程為,

消去可得

,即

,代入①式可得,所以,

所以,同理可得

, ,

因為三點共線,所以,

將點的坐標代入化簡可得,即

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,成等差數(shù)列,點在直線上的射影為,點在直線上,則線段長度的最小值是__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結論:函數(shù)是同一函數(shù);函數(shù)的定義域為,則函數(shù)的定義域為;函數(shù)的遞增區(qū)間為;其中正確的個數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】AB為過拋物線焦點F的弦,P為AB中點,A、B、P在準線l上射影分別為M、N、Q,則下列命題: 以AB為直徑作圓,則此圓與準線l相交;;;;、O、N三點共線為原點,正確的是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )的左右焦點分別為, ,若橢圓上一點滿足,且橢圓過點,過點的直線與橢圓交于兩點 .

(1)求橢圓的方程;

(2)過點軸的垂線,交橢圓,求證: , , 三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為, 為參數(shù)).以坐標原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為.

(1)當時,求曲線上的點到直線的距離的最大值;

(2)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題pk2﹣8k﹣20≤0,命題q:方程1表示焦點在x軸上的雙曲線.

(1)命題q為真命題,求實數(shù)k的取值范圍;

(2)若命題“pq”為真,命題“pq”為假,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓 的焦距與橢圓 的短軸長相等,且的長軸長相等,這兩個橢圓在第一象限的交點為,直線經(jīng)過軸正半軸上的頂點且與直線為坐標原點)垂直, 的另一個交點為, 交于, 兩點.

(1)求的標準方程;

(2)求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)只有一個零點,且這個零點為正數(shù),則實數(shù)的取值范圍是____

查看答案和解析>>

同步練習冊答案