設(shè)點(diǎn)A(-2,),橢圓+ =1的右焦點(diǎn)為F,點(diǎn)P在橢圓上移動(dòng).當(dāng)|PA|+2|PF|取最小值時(shí),P點(diǎn)的坐標(biāo)是多少?
(2,)
設(shè)橢圓的右準(zhǔn)線為l,過AANlN,AN交橢圓于P,則P點(diǎn)就是所求的點(diǎn),坐標(biāo)為(2,).
事實(shí)上,易知橢圓離心率為.
|PA|+2|PF|=|PA|+2×|PN|=|PA|+|PN|,
(|PN|是P到相應(yīng)準(zhǔn)線的距離.顯然|PA|+|PN′|>|AP|+|PN|).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形中,,,,
,橢圓以、為焦點(diǎn)且經(jīng)過點(diǎn)
(Ⅰ)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓的方程;
(Ⅱ)以該橢圓的長(zhǎng)軸為直徑作圓,判斷點(diǎn)C與該圓的位置關(guān)系。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓=1上任意一點(diǎn)P,由P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在線段PQ上,且=2,點(diǎn)M的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過定點(diǎn)F(0,2)的直線l交曲線E于不同的兩點(diǎn)G,H(點(diǎn)G在點(diǎn)F,H之間),且滿足=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓 (a>b>0)的左、右焦點(diǎn)分別為F1F2,線段F1F2被拋物線y2=2bx的焦點(diǎn)分成5∶3兩段,則此橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的兩焦點(diǎn)為F1(0,-1)、F2(0,1),直線y=4是橢圓的一條準(zhǔn)線.
(1)求橢圓方程;
(2)設(shè)點(diǎn)P在橢圓上,且|PF1|-|PF2|=1,求tan∠F1PF2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)M在橢圓上,橢圓方程為+=1,M點(diǎn)到左準(zhǔn)線的距離為2.5,則它到右焦點(diǎn)的距離為
A.7.5B.12.5
C.2.5D.8.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)為橢圓的左焦點(diǎn),點(diǎn),動(dòng)點(diǎn)在橢圓上,則的最小值為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過橢圓C: (a>b>0)的一個(gè)焦點(diǎn)且垂直于x軸的直線與橢圓C交于點(diǎn)(,1).(1)求橢圓C的方程;(2)設(shè)過點(diǎn)P(4,1)的動(dòng)直線與橢圓C相交于兩個(gè)不同點(diǎn)A、B,與直線2x+y-2=0交于點(diǎn)Q,若,,求λ+μ的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的焦點(diǎn)為(-1,0)和(1,0),P是橢圓上的一點(diǎn),且 與的等差中項(xiàng),則該橢圓的方程為( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案