如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1
,M是線段EF的中點(diǎn).
(1)證明:CM平面DFB
(2)求異面直線AM與DE所成的角的余弦值.
(1)設(shè)正方形的對(duì)角線AC和BD相交于點(diǎn)O,∵M(jìn)為的中點(diǎn),ACEF為矩形,故MF和CO平行且相等,
故四邊形COFM為平行四邊形,故CMOF,
而OF?平面DFB,CM不在平面DFB內(nèi),∴CM平面DFB.
(2)以點(diǎn)C為原點(diǎn),CD為x軸,CB為y軸,CE為z軸,建立空間直角坐標(biāo)系,則點(diǎn)C(0,0),點(diǎn)A(
2
2
,0),點(diǎn)E(0,0,1),
點(diǎn)D(
2
,0,0),點(diǎn)M(
2
2
,
2
2
,1),
AM
=(-
2
2
,-
2
2
,1),
DE
=(-
2
,0,1),|
AM
|=
2
,|
DE
|=
3
,
AM
DE
=1+0+1=2.
設(shè)
AM
、
DE
的夾角為θ,cosθ=
AM
DE
|AM
|•|
DE
|
=
2
2
3
=
6
3
,故異面直線AM與DE所成的角的余弦值為
6
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知球面上的三點(diǎn)A、B、C,AB=6,BC=8,AC=10,球的半徑為13,求球心到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,O為底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中點(diǎn)
(1)求證:直線MO平面PAB;
(2)求證:平面PCD⊥平面ABM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F(xiàn)分別是AC,PB的中點(diǎn).
(Ⅰ)證明:EF平面PCD;
(Ⅱ)若PA=AB,求EF與平面PAC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖為一組合體,其底面ABCD為正方形,PD⊥平面ABCD,ECPD,且PD=AD=2EC=2
(Ⅰ)求證:BE平面PDA;
(Ⅱ)求四棱錐B-CEPD的體積;
(Ⅲ)求該組合體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥平面ABC,∠ACB=90°.
(1)求證:BC⊥AA1
(2)若M,N是棱BC上的兩個(gè)三等分點(diǎn),求證:A1N平面AB1M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐E-ABCD中,底面ABCD是矩形,AB=2BC,P、Q分別為線段AB、CD的中點(diǎn),EP⊥底面ABCD.
(1)求證:AQ平面CEP;
(2)求證:平面AEQ⊥平面DEP;
(3)若EP=AP=1,求三棱錐E-AQC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠BAC=
3
5

(1)求證:BC⊥AC1;
(2)若D是AB的中點(diǎn),求證:AC1平面CDB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AC=BC=
1
2
AA1=2,∠ACB=90°,D為AB的中點(diǎn),E點(diǎn)在BB1上且DE=
6

(1)求證:AB1平面DEC.
(2)求證:A1E⊥平面DEC.

查看答案和解析>>

同步練習(xí)冊(cè)答案