已知拋物線上有一點,到焦點的距離為.
(Ⅰ)求及的值.
(Ⅱ)如圖,設(shè)直線與拋物線交于兩點,且,過弦的中點作垂直于軸的直線與拋物線交于點,連接.試判斷的面積是否為定值?若是,求出定值;否則,請說明理由.
(I),;(II)的面積為定值,且為.
解析試題分析:(I)已知拋物線上有一點,到焦點的距離為,求及的值,有焦半徑公式,,及已知可得的值,又因為在拋物線上,把代入得可求的值;(II)判斷的面積是否為定值?關(guān)鍵是寫出的面積形式,解析幾何中,求三角形的面積,常常采用分割法,分成兩個公共底平行于坐標軸,高為坐標之差來求,本題已給出,只需求出的長即可,而的橫坐標為,由此可采用設(shè)而不求,既有,得:,可得,,再由,可求出關(guān)系,可得的坐標,從而得的坐標,,這樣可求出的長,得的面積,可解.
試題解析:(I)焦點, 1分
, 3分
,代入,得 5分
(II)聯(lián)立,得:,即, 6分
, 8分
=,, 11分
, 13分
的面積 15
分注:其他解法可參考給分.
考點:拋物線的方程,直線與拋物線的位置關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,直線與E交于A、B兩點,且,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標為,記直線CA、CB的斜率分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的長軸為AB,過點B的直線與
軸垂直,橢圓的離心率,F為橢圓的左焦點,且
(1)求此橢圓的標準方程;
(2)設(shè)P是此橢圓上異于A,B的任意一點, 軸,H為垂足,延長HP到點Q,使得HP=PQ,連接AQ并延長交直線于點,為的中點,判定直線與以為直徑的圓O位置關(guān)系。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左右兩焦點分別為,是橢圓上一點,且在軸上方,.
(1)求橢圓的離心率的取值范圍;
(2)當(dāng)取最大值時,過的圓的截軸的線段長為6,求橢圓的方程;
(3)在(2)的條件下,過橢圓右準線上任一點引圓的兩條切線,切點分別為.試探究直線是否過定點?若過定點,請求出該定點;否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
)如圖,橢圓:,、、、為橢圓的頂點
(Ⅰ)若橢圓上的點到焦點距離的最大值為,最小值為,求橢圓方程;
(Ⅱ)已知:直線相交于,兩點(不是橢圓的左右頂點),并滿足 試研究:直線是否過定點? 若過定點,請求出定點坐標,若不過定點,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的頂點在橢圓上,在直線上,且.
(1)當(dāng)邊通過坐標原點時,求的長及的面積;
(2)當(dāng),且斜邊的長最大時,求所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,斜率為的直線過拋物線的焦點,與拋物線交于兩點A、B, M為拋物線弧AB上的動點.
(Ⅰ)若,求拋物線的方程;
(Ⅱ)求△ABM面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在周長為定值的DDEC中,已知,動點C的運動軌跡為曲線G,且當(dāng)動點C運動時,有最小值.
(1)以DE所在直線為x軸,線段DE的中垂線為y軸建立直角坐標系,求曲線G的方程;
(2)直線l分別切橢圓G與圓(其中)于A、B兩點,求|AB|的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com