過(guò)點(diǎn)B(0,1)的直線l1交曲線x=2于P(2,y0),過(guò)點(diǎn)B'(0,-1)的直線l2交x軸于P'(x0,0)點(diǎn),
x0
2
+y0=1
,l1∩l2=M.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)直線l與C相交于不同的兩點(diǎn)S、T,已知點(diǎn)S的坐標(biāo)為(-2,0),點(diǎn)Q(0,m)在線段ST的垂直平分線上且
QS
QT
≤4,求m的取值范圍.
分析:(Ⅰ)確定直線l1、l2的方程,聯(lián)立方程可得動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)直線l的方程,代入橢圓方程,利用韋達(dá)定理,確定線段ST的中點(diǎn)坐標(biāo),分類討論,利用
QS
QT
≤4,即可得到結(jié)論.
解答:解:(Ⅰ)由題意,直線l1的方程是y=-
1-y0
2
x+1
,
x0
2
+y0=1
,∴l(xiāng)1的方程是y=-
x 0
4
x+1

若直線l2與y軸重合,則M(0,1);
若直線l2不與y重合,可求得直線l2的方程是y=
1
x0
x-1
,與l1的方程聯(lián)立消去x0
x2
4
+y2=1

因l1不經(jīng)過(guò)(0,-1),故動(dòng)點(diǎn)M的軌跡C的方程是
x2
4
+y2=1
(y≠-1)…(5分)
(Ⅱ)設(shè)T(x1,y1),直線l的方程為y=k(x+2)(k≠-
1
2
)

于是S、T兩點(diǎn)的坐標(biāo)滿足方程組
y=k(x+2)
x2
4
+y2=1
,由方程消去y并整理得(1+4k2)x2+16k2x+16k2-4=0
由-2x1=
16k2-4
1+4k2
得x1=
2-8k2
1+4k2
,從而y1=
4k
1+4k2

設(shè)線段ST的中點(diǎn)為N,則N(-
8k2
1+4k2
2k
1+4k2
)…(7分)
以下分兩種情況:①當(dāng)k=0時(shí),點(diǎn)T的坐標(biāo)為(2,0),線段ST的垂直平分線為y軸,
于是
QS
=(-2,-m),
QT
=(2,-m)
,由
QS
QT
≤4得:-2
2
≤m≤2
2

②當(dāng)k≠0時(shí),線段ST的垂直平分線方程為y-
2k
1+4k2
=-
1
k
(x+
8k2
1+4k2

令x=0,得m=-
6k
1+4k2

k≠-
1
2
,∴m≠
3
2
,
QS
QT
=-2x1-m(y1-m)=
-2(2-8k2)
1+4k2
+
6k
1+4k2
4k
1+4k2
+
6k
1+4k2
)=
4(16k4+15k2-1)
(1+4k2)2
≤4
解得-
14
7
≤k≤
14
7
且k≠0,∴m=-
6k
1+4k2
=-
6
1
k
+4k

∴當(dāng)-
14
7
≤k<0時(shí),
1
k
+4k
≤-4;當(dāng)0<k≤
14
7
時(shí),
1
k
+4k
≥4
∴-
3
2
≤m≤
3
2
,且m≠0
綜上所述,-
3
2
≤m<
3
2
,且m≠0.…(12分)
點(diǎn)評(píng):本題考查軌跡方程,考查直線與橢圓的位置關(guān)系,考查向量知識(shí)的運(yùn)用,考查分類討論的數(shù)學(xué)思想,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)P與直x=4的距離等于它到定點(diǎn)F(1,0)的距離的2倍,
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)點(diǎn)M(1,1)在所求軌跡內(nèi),且過(guò)點(diǎn)M的直線與曲線C交于A、B,當(dāng)M是線段AB中點(diǎn)時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C的方程
x2
a2
+
y2
b2
=1(a>b>0)
,斜率為1的直L與橢C交于A(x1,y1)B(x2,y2)兩點(diǎn).
(Ⅰ)若橢圓的離心率e=
3
2
,直線l過(guò)點(diǎn)M(b,0),且
OA
OB
=-
12
5
,求橢圓C的方程;
(Ⅱ)直線l過(guò)橢圓的右焦點(diǎn)F,設(shè)向量
OP
=λ(
OA
+
OB
)(λ>0),若點(diǎn)P在橢C上,λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點(diǎn),且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)離心率為
3
2
,且過(guò)P(
6
,
2
2
).
(1)求橢圓E的方程;
(2)已知直線l過(guò)點(diǎn)M(-
1
2
,0),且與開(kāi)口朝上,頂點(diǎn)在原點(diǎn)的拋物線C切于第二象限的一點(diǎn)N,直  線l與橢圓E交于A,B兩點(diǎn),與y軸交與D點(diǎn),若
AB
=λ
AN
,
BD
BN
,且λ+μ=
5
2
,求拋物線C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省皖南八校高三第一次聯(lián)考理科數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)已知橢圓過(guò)點(diǎn)A(a,0),B(0,b)的直

 

線傾斜角為,原點(diǎn)到該直線的距離為.

 

(1)求橢圓的方程;

(2)斜率小于零的直線過(guò)點(diǎn)D(1,0)與橢圓交于M,N兩點(diǎn),若求直線MN的方程;

(3)是否存在實(shí)數(shù)k,使直線交橢圓于P、Q兩點(diǎn),以PQ為直徑的圓過(guò)點(diǎn)D(1,0)?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案