【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,平面ABCD,且,點(diǎn)E為線段PD的中點(diǎn).

1)求證:平面AEC

2)求證:平面PCD;

3)求三棱錐的體積.

【答案】1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3

【解析】

1)連結(jié)BD,交AC于點(diǎn)O,連結(jié)OE.可得PBOE,再由線面平行的判定可得PB∥平面AEC

2)由PA=AD,E為線段PD的中點(diǎn),得AEPD,再由PA⊥平面ABCD,得PACD,由線面垂直的判定可得AE⊥平面PCD;

3)根據(jù)AE⊥平面PCD,結(jié)合三棱錐的體積公式求出其體積即可.

(1)證明:連結(jié)BD,交AC于點(diǎn)O,連結(jié)OE,

如圖示:

O是正方形ABCD對(duì)角線交點(diǎn),∴OBD的中點(diǎn),

由已知E為線段PD的中點(diǎn),PBOE,

OE平面AECPB平面AEC,

PB∥平面AEC

(2)證明:∵PA=AD,E為線段PD的中點(diǎn),∴AEPD,

PA⊥平面ABCD,∴PACD

在正方形ABCD中,CDAD,又PAAD=A,

CD⊥平面PAD,又AE平面PAD,

CDAE,又PDCD=D

AE⊥平面PCD;

(3)平面ABCD,,點(diǎn)E為線段PD的中點(diǎn),

為等腰直角三角形,,

底面ABCD是正方形,CD=3,

AE⊥平面PCD,

故三棱錐APCE的體積:

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在中,角的對(duì)邊分別為,且.

(1)求的值;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代名著《莊子·天下篇》中有一句名言“一尺之棰,日取其半,萬(wàn)世不竭”,其意思為:一尺的木棍,每天截取一半,永遠(yuǎn)都截不完.現(xiàn)將該木棍依此規(guī)律截取,如圖所示的程序框圖的功能就是計(jì)算截取7天后所剩木棍的長(zhǎng)度(單位:尺),則①②③處可分別填入的是

A. A B. B C. C D. D

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),以軸為非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)求圓的普通方程與極坐標(biāo)方程;

(2)若直線的極坐標(biāo)方程為,求圓上的點(diǎn)到直線的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中, , , 為線段的中點(diǎn), 為線段的三等分點(diǎn)(如圖1).將沿著折起到的位置,連接(如圖2).

1若平面平面,求三棱錐的體積;

2記線段的中點(diǎn)為,平面與平面的交線為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了如圖所示的折線圖.

根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是(  )

A. 月接待游客量逐月增加

B. 年接待游客量逐年增加

C. 各年的月接待游客量高峰期大致在7,8月

D. 各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子中裝有6個(gè)完全相同的小球,分別標(biāo)號(hào)為1,2,3,4,5,6.

1)一次取出兩個(gè)小球,求其號(hào)碼之和能被3整除的概率;

2)有放回的取球兩次,每次取一個(gè),求兩個(gè)小球號(hào)碼是相鄰整數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中軸的正半軸重合.若曲線的參數(shù)方程為為參數(shù)),直線的極坐標(biāo)方程為.

(1)將曲線的參數(shù)方程化為極坐標(biāo)方程;

(2)由直線上一點(diǎn)向曲線引切線,求切線長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)拋物線y2=4x的焦點(diǎn)F的弦長(zhǎng)為36,求弦所在的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案