已知頂點為原點的拋物線的焦點與橢圓的右焦點重合,與在第一和第四象限的交點分別為.
(1)若△AOB是邊長為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率;
(3)點為橢圓上的任一點,若直線、分別與軸交于點和,證明:.
(1);(2);(3)證明過程詳見試題解析.
【解析】
試題分析:(1)由△AOB是邊長為的正三角形得到,代入拋物線方程中,可以得到所求拋物線方程為;(2)由可知點的橫坐標是,因此可結合建立關于的方程為:,解出;(3)利用設而不求的思想,可先設三點后代入橢圓方程中,由于的方程為,求出,,那么化簡后得到:.
試題解析:(1)設橢圓的右焦點為,依題意得拋物線的方程為
∵△是邊長為的正三角形,
∴點A的坐標是,
代入拋物線的方程解得,
故所求拋物線的方程為
(2)∵, ∴ 點的橫坐標是
代入橢圓方程解得,即點的坐標是
∵ 點在拋物線上,
∴,
將代入上式整理得:,
即,解得
∵ ,故所求橢圓的離心率.
(3)證明:設,代入橢圓方程得
而直線的方程為
令得.
在中,以代換得
∴ .
考點:圓錐曲線;直線與圓錐曲線的位置關系.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 |
4 |
10 |
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年浙江省桐鄉(xiāng)市高三10月月考文科數(shù)學 題型:填空題
22.(本題滿分15分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;
|
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省濟寧市高三第二次月考文科數(shù)學 題型:解答題
(本題滿分18分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;
(Ⅲ)過A、B分別作拋物C的切線且交于點M,求與面積之和的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年黑龍江省高三上學期期末考試數(shù)學理卷 題型:解答題
(本小題滿分12分)
已知以向量v=(1, )為方向向量的直線l過點(0, ),拋物線C: (p>0)的頂點關于直線l的對稱點在該拋物的準線上.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設A、B是拋物線C上兩個動點,過A作平行于x軸的直線m交直線OB于點N,若
(O為原點,A、B異于原點),試求點N的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com