對(duì)有n(n≥4)個(gè)元素的總體{1,2,…,n}進(jìn)行抽樣,先將總體分成兩個(gè)子總體(1,2,…,m)和{m+1,m+2,…,n}(m是給定的正整數(shù),且2≤m≤n-2),再從每個(gè)子總體中各隨機(jī)抽取2個(gè)元素組成樣本.用Pij表示元素i和j同時(shí)出現(xiàn)在樣本中的概率,則p1n=________;所有Pij(1≤i<j≤n)的和等于________,上述兩個(gè)空格分別填

[  ]

A.,1

B.,6

C.,1

D.,6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某連鎖經(jīng)營公司所屬5個(gè)零售店某月的銷售額和利潤額資料如下表
商店名稱 A B C D E
銷售額x(千萬元) 3 5 6 7 9
利潤額y(百萬元) 2 3 3 4 5
(1)畫出散點(diǎn)圖.觀察散點(diǎn)圖,說明兩個(gè)變量有怎樣的相關(guān)性.
(2)用最小二乘法計(jì)算利潤額y對(duì)銷售額x的回歸直線方程.
(3)當(dāng)銷售額為4(千萬元)時(shí),估計(jì)利潤額的大小.b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

商店名稱 A B C D E
銷售額x(千萬元) 3 5 6 7 9
利潤額y(百萬元) 2 3 3 4 5
某連鎖經(jīng)營公司所屬5個(gè)零售店某月的銷售額和利潤額資料如下表:
(1)畫出散點(diǎn)圖.觀察散點(diǎn)圖,說明兩個(gè)變量有怎樣的相關(guān)性.
(2)用最小二乘法計(jì)算利潤額y對(duì)銷售額x的回歸直線方程.
(3)當(dāng)銷售額為4(千萬元)時(shí),估計(jì)利潤額的大小.參考公式:回歸直線的方程
是:
?
y
=bx+a
,其中b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x
,其中
?
yi
是與xi對(duì)應(yīng)的回歸估計(jì)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案