某民營企業(yè)生產(chǎn)兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,產(chǎn)品的利潤與投資成正比,其關(guān)系如圖甲,產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖乙(注:利潤與投資單位:萬元)

(Ⅰ)分別將兩種產(chǎn)品的利潤表示為投資(萬元)的函數(shù)關(guān)系式;
(Ⅱ)該企業(yè)已籌集到10萬元資金,并全部投入兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元?

(本小題共14分)
解:(Ⅰ)設(shè)投資為x萬元,A產(chǎn)品的利潤為萬元,B產(chǎn)品的利潤為萬元.
由題設(shè)
由圖知=,故= 
 [來源:Z_xx_k.Com]
從而.
(Ⅱ)設(shè)A產(chǎn)品投入x萬元,則B產(chǎn)品投入10-x萬元,設(shè)企業(yè)利潤為y萬元.

,則.
當(dāng).
答:當(dāng)A產(chǎn)品投入3.75萬元,B產(chǎn)品投入6.25萬元,企業(yè)最大利潤為萬元.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)=ax2+(b-8)x-a-ab , 當(dāng)x(-∞,-3)(2,+∞)時, <0,當(dāng)x(-3,2)時>0 .
(1)求在[0,1]內(nèi)的值域.
(2)若ax2+bx+c≤0的解集為R,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
⑴求的值;
⑵判斷函數(shù)在定義域內(nèi)的單調(diào)性并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知定義在區(qū)間上的函數(shù)為奇函數(shù)且
(1)求實數(shù)m,n的值;
(2)求證:函數(shù)上是增函數(shù)。
(3)若恒成立,求t的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

集合M={a,b,c},N={-1,0,1},映射f:M→N滿足f(a)+f(b)+f(c)=0,那么映射f:M→N的個數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
求下列函數(shù)的定義域  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)如圖,函數(shù)y=|x|在x∈[-1,1]的圖象上有兩點A、B,AB∥
Ox軸,點M(1,m)(m是已知實數(shù),且m>)是△ABC的邊BC的中點。
(Ⅰ)寫出用B的橫坐標(biāo)t表示△ABC面積S的函數(shù)解析式S=f(t);
(Ⅱ)求函數(shù)S=f(t)的最大值,并求出相應(yīng)的C點坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分) 已知函數(shù)定義域為,對于定義域內(nèi)的任意x,y都有,且,當(dāng)

查看答案和解析>>

同步練習(xí)冊答案